
An Introduction to
Practical Multiparty Computation

Jack Doerner [Northeastern U]

This Talk
MPC Frameworks

Circuit Structures

The Memory Problem

Custom Protocols

- General Computation

- Solving Specific Problems

- A Perpetual Bugbear

- Beyond Circuits

But not:
Theory, Protocols, Security Models

MPC History
1982

2004

2016 
 
 
 

 

Yao’s Garbled Circuits

Fairplay

FairplayMP, Obliv-C, ObliVM,
FastGC, TASTY, SPDZ, EMP,
TinyOT, ShareMind, PCF,
Sharemonad, TinyOT, Fresco,
Wysteria, …

Plus, many schemes that have
never been implemented!

MPC Frameworks

Obliv-C ObliVM

SPDZ Sharemind

The n Millionaires Problem

The n Millionaires Problem

1. Millionaires 
 additively share
 their inputs

2. Computation
 authorities engage
 in MPC

3. Result is revealed  
 

MPC Frameworks

Obliv-C ObliVM

SPDZ Sharemind

• Protocol: Yao’s Garbled Circuits (others possible)

• Language type: C-compatible DSL

• Philosophy: Minimalism and expressiveness  
 Only one additional keyword over C

• Raw speed: 3M+ AND gates per second reported

• Unique feature: Compiled; C-compatible  

[ZE15]

Language features not seen

• obliv functions

• ~obliv

• intelligent typecasting

Scalability Example: Secure Stable Matching

[DEs16]

Scalability Example: Linear System Solving

[GSBRDZE16]

MPC Frameworks

Obliv-C ObliVM

SPDZ Sharemind

ObliVM
• Protocol: Yao’s Garbled Circuits

• Language type: Java/C++ style DSL

• Philosophy: Common operations are first-class  
 language constructs. Includes everything 
 and the kitchen sink.

• Raw speed: 700K AND gates per second reported  
 or 1.8M with preprocessing

[LWNHS15]

ObliVM

ObliVM
Language features not seen
• phantom functions
• shared random types
• bounded loops
• hinted loop-coalescing
• automatic ORAM
• built-in map + reduce
• C-style structs

MPC Frameworks

Obliv-C ObliVM

SPDZ Sharemind

SPDZ
• Protocol: n-party Linear Secret Sharing + SHE

• No Language: programmed via python library calls

• Raw Speed (2PC Online): 358K multiplications/second  
 (2PC Offline): 4800 multiplications/second

• Unique feature: Covert or Malicious security against  
 dishonest majority

[DPSZ11] [DKLPSS12] [KOS16]

SPDZ

SPDZ

SPDZ

Language features not seen

• Native GF(2n) types

• Many bits of syntax

MPC Frameworks

Obliv-C ObliVM

SPDZ Sharemind

• A Commercial “Application Server Platform” (free for
researchers). Similar to Java or .NET

• Originally used a 3-party semi-honest protocol; now
includes SPDZ, YGC, three-party malicious

• Programming environments:
• C/C++ library calls
• SecreC, a C-like DSL
• Rmind, an R-inspired statistical analysis language

• Unique feature: vector optimized
[sharemind.cyber.ee] [BLW08] [J10] [BKLS14]

[BJSV15]

Scalability Example: Tax Fraud Detection

[sharemind.cyber.ee] [BKKRST16]

Scalability Example: Population-scale Statistical Studies

MPC Frameworks
Obliv-C ObliVM SPDZ Sharemind

Protocol Yao’s GC
(others possible) Yao’s GC n-party LSS +

SHE Multiple

Programming
Paradigm

C-compatible
DSL Java-like DSL Python Library “Application

Server Platform”

Philosophy Minimalism,
Be like C

Do the sensible
thing

No front-end
Language

Commercial,
Ever-growing

Advantages Is like C,
Compiled, fast

Many language
features

Malicious or
Covert Security

Diverse Toolset,
Vector-optimized

Disadvantages Is like C,
No Floating Point

Complicated
Syntax

Precomputation,
Leaky Abstraction Commercial

Circuit Structures

Circuit Structures

Seems simple enough, right?
But how do we sort?

“Standard” Sorts

O(logn) O(n)

Heapsort’s data-dependent branches make it inefficient
Quicksort is totally unsuitable

Batcher’s Mergesort

Batcher’s Mergesort

A sorting algorithm with
no data-dependent branches

Recursively  
Sort Lower Half

Recursively  
Sort Upper Half

Merge Even 
Rows

Merge Odd
Rows

Compare Neighbor
Elements

Circuit Structures

Batcher Merge

Batcher Odd-Even
Mergesort

AKS Sorting Network

Waksman Permutation
Network

O(nlogn)

O(nlog2n) 

O(nlogn)

O(nlogn) 

[B68]

[B68] 

[AKS83]

[W68] 

Circuit Structures

Batcher Merge

Batcher Odd-Even
Mergesort

AKS Sorting Network

Waksman Permutation
Network

O(nlogn)

O(nlog2n) 

O(nlogn)

O(nlogn) 

[B68]

[B68] 

[AKS83]

[W68] 

The Memory Problem

Oblivious Stack

Oblivious Stack

Oblivious Stack

1

2

Oblivious Stack

1

2

Oblivious Stack

Oblivious Stack

Oblivious Stack

5 blocks
every access

10 blocks every
2nd access

20 blocks every
4th access

40 blocks every
8th access

Amortized cost:  
Layers:

5 blocks per layer per access 
O(logn)

Oblivious Stack

Sublinear-time Memories

Stack, Queue

Square-root ORAM

Tree ORAM 
(Circuit, Path)

Algorithm-Specific

O(logn)

O(sqrt(nlog3n))

O(log3n) 

O(?)

 
[ZE13]

[ZWRGDEK15]

[SDSFRYD13]  
[WCS15]

[BSA13] 
[DEs16]

Sublinear-time Memories

Stack, Queue

Square-root ORAM

Tree ORAM 
(Circuit, Path)

Algorithm-Specific

O(logn)

O(sqrt(nlog3n))

O(log3n) 

O(?)

 
[ZE13]

[ZWRGDEK15]

[SDSFRYD13]  
[WCS15]

[BSA13] 
[DEs16]

Custom Protocols

oblivc.org
oblivm.com
www.cs.bris.ac.uk/Research/
CryptographySecurity/SPDZ

sharemind.cyber.ee

MPC Frameworks

Obliv-C

ObliVM

SPDZ 

Sharemind

An Introduction to
Practical Multiparty Computation

Jack Doerner [Northeastern U]

jackdoerner.net

