!

¢

J
¥
(¢

l

|
!

ol

nis lalk

MPC Frameworks - General Computation
Circuit Structures - Solving Specific Problems
The Memory Problem - A Perpetual Bugbear

Custom Protocols - Beyond Circuits

But Not:
Theory, Protocols, Security Models

MPC History

1982 Yao's Garbled Circuits

2004
2010

~airplay

FairplayMP, Obliv-C, ObliVM,
FastGC, TASTY, SPDZ, EMP,
TinyOT, ShareMind, PCF,
Sharemonad, TinyOT, Fresco,
Wysteria, ...

Plus, many schemes that have
never been iImplemented!

MPC Frameworks

Obliv-C ObliVM
SPD/ Sharemind

1he n Milllonarres Proplem

function nmillionaires(array balances[n], var n):
var winning_millionaire = -1
var winning_balance = -1

for 11 from 1 to n:
if balances[ii] > winning_balance:
winning_balance = balances[ii]
winning_millionaire = ii
return winning_millionaire

O~NOUTLESE WN =

1he n Milllonares Proplem

1. Milllonaires 2. Computation 3. Result is revealed
additively share authorities engage
their inputs in MPC

MPC Frameworks

Obliv-C ObliVM
SPD/ Sharemind

» Protocol: Yao's Garbled Circuits (others possible)

e | anguage type: C-compatible DSL

e Philosophy: Minimalism and expressiveness
Only one additional keyword over C

e Raw speed: SM+ AND gates per second reported

e Unigue feature: Compiled; C-compatible

ZE15]

Ooo~NOULTAWNER

#include <obliv.oh>
int nmillionaires(int * inputs, int number_of_millionaires) {

obliv int winning_millionaire = -1;
obliv int winning_balance = -1;

for (int ii = 0; ii < number_of_millionaires; ii++) {

obliv int current_millionaire_balance = feedOblivInt(inputs[ii], 1);
current_millionaire_balance -= feedOblivInt(inputs([ii], 2);

obliv if (current_millionaire_balance > winning_balance) {
winning_millionaire = ii;
winning_balance = current_millionaire_balance;

}

int result;
revealOblivInt(&result, winning_millionaire, 0);
return result;

Language features not seen
e ODlIvV functions
e ~ODliv

e ntelligent typecasting

Scalapbllity Example: Secure Stable Matching

--------- Textbook Algorithm —— Improved Algorithm

@ Linear Scan Circuit ORAM @ Square-Root ORAM

106 , . :

Execution Time (seconds)

Number of Pairs

Figure 8: Secure Gale-Shapley Execution Time vs Pair Count.
Values are mean wall-clock times in seconds for full protocol exe-
cution including initialization. For benchmarks of 4-64 pairs, we
collected 30 samples; for 128-256 pairs we collected three sam-
ples; and for 512 pairs we collected one sample.

DEs16)

Algorithm Phase Time (hours) Billions of Non-Free Gates
Sharing 1.07 18.14
Setup 1.60 29.65
Permutation 0.56 6.56
Proposal/Rejection 15.01 172.52
Total 18.22 226.87

Table 2: Secure Roth-Peranson NRMP Benchmark Results. For
this benchmark we set n = 35476, m = 4836, g = 15, r = 120, and
s = 12. These parameters are intended to be representative of the
match performed by the National Residency Matching Program.

Time (seconds)

Scalability Example: Linear System Solving

10° 3 T T T T
4 Cholesky
10t ++ CGD 5
CGD 10
10| 4 CGD 15 .
|11 ot
107 3
101 E - E
100 . |
F A 3 E
10—1-_ __________ I E
10—2 I 1 N . 1 . 1 1
10 20 50 100 200

GSBRDZET16)

500

d OT Cholesky CGD 5 CGD 10 CGD 15
10 0.052 2.751 7.585 15.099 22.608
20 0.146 12.507 23.492 46.798 70.089
50 0.698 124.918 120.002 239.209 358.467

100 2.509 841.372 446.744 890.811 1334.814
200 9.608 6144.301 1713.717 3417.499 5121.407
500 d7.791 89193.308 10474.579 20 888.350 31 300.942

Figure 6: Comparison between different methods for solving linear systems: Running time
(seconds) of our Cholesky and CGD (with 5, 10, and 15 iterations) implemen-
tations as a function of input dimension. While Cholesky is faster than CGD
for lower values of d, it is quickly overtaken by the latter as d increases. This
shows that for high-dimensional data, iterative methods are preferable in terms of
computation time. The time spent running oblivious transfers is also shown, and
corresponds to a small fraction of the running time.

MPC Frameworks

Obliv-C ObliVM
SPD/ Sharemind

OblIVM

e Protocol: Yao's Garbled Circuits

e | anguage type: Java/C++ style DSL

e Philosophy: Common operations are first-class
language constructs. Includes everything
and the kitchen sink.

e Raw speed: 7OOK AND gates per second reported
or 1.8M with preprocessing

LWNHS15]

OblIVM

OCoOoONOULAEA WN R

==

===

Ol=—=|==|R

== —l P
°
°

secure int nmillionaires@n(secure int[n] inputs) {

public int number_of_millionaires = n;

secure int winning_millionaire = -1;
secure int winning_balance = -1;

for (int ii = 0; ii < number_of _millionaires; ii++) {
secure int current_millionaire_balance = inputs[iil];
if (current_millionaire_balance > winning_balance) {

winning_millionaire = ii;
winning_balance = current_millionaire_balance;

}

return winning_millionaire;

OblIVM

L anguage features not seen
* phantom functions

e shared random types

e bounded loops

* Ninted loop-coalescing

e automatic ORAM

* Duilt-in map + reduce

e (C-style structs

MPC Frameworks

Obliv-C ObliVM
SPD/ Sharemind

SPDZ St

» Protocol: n-party Linear Secret Sharing + SHE

 No Language: programmed via python library calls

e« Raw Speed (2PC Online): 358K multiplications/second
(2PC Offline): 4800 multiplications/second

* Unigque feature: Covert or Malicious security against
dishonest majority

DPSZ11] IDKLPSS12] [KOS16)

oPD/

1 from Compiler.types import

2 from Compiler.util import x

3

4 def nmillionaires(inputs, number_of_millionaires):

5

6 winning_millionaire = sint(-1)

7 winning_balance = sint(-1)

8

9 for ii in range(number_of_millionaires):

10

11 current_millionaire_balance = sint.get_raw_input_ from(0)
12 current_millionaire_balance -= sint.get_raw_input_from(1)
13

14 if_then(current_millionaire_balance > winning_balance)
15 winning_millionaire = sint(ii)

16 winning_balance = current_millionaire_balance

17 end_if()

18

19 return winning_millionaire.reveal()

OCoONOUTE WN =

oPD/

from Compiler.types import x
from Compiler.util import x*

def nmillionaires(inputs, number_of_millionaires):

winning_millionaire = sint(-1)
winning_balance = sint(-1)

for ii in range(number_of_millionaires):

current_millionaire_balance = sint.get_raw_input_from(Q)
current_millionaire_balance -= sint.get_raw_input_from(1)

overwrite = current_millionaire_balance > winning_balance
winning_millionaire = overwrite.if _else(winning_millionaire, sint(ii))
winning_balance = overwrite.if_else(winning_balance, current_millionaire_balance)

return winning_millionaire.reveal()

oPD/

L anguage features not seen
 Native GF(2") types

e Many bits of syntax

MPC Frameworks

Obliv-C ObliVM
SPD/ Sharemind

-

sharemind

A Commercial "Application Server Platform” (free for
researchers). Similar to Java or NET

e QOriginally used a 3-party semi-honest protocol; now
iNncludes SPDZ, YGC, three-party malicious

e Programming environments:

o C/C++ library calls

e SecreC, a C-like DSL

e RMiNd, an R-INspired statistical analysis language
* Unigue feature: vector optimizeo
'sharemind.cyber.ee| [BLWOS| [J10] [BKLS 14

OCOoOoONOULASA WNR

o

sharemind

public int nmillionaires(private int inputs[], public int number_of_millionaires) {

private int winning_millionaire = -1;
private int winning_balance = -1;

for (public int ii = @; ii < number_of_millionaires; ii++) {
private int current_millionaire_balance = inputs[ii];
private bool overwrite = current_millionaire_balance > winning_balance;
winning_millionaire = overwritexii + (1l-overwrite)xwinning_millionaire;

winning_balance = overwritexcurrent_millionaire_balance + (1l-overwrite)*winning_balance;

}

return declassify(winning_millionaire);

sharemind

Scalapility Example: Tax Fraud Detection

Table 2: The three regional instance deployments used, modelling one or many

X 111:16:25
cloud providers 110 hours
Client 100 hours
Regions instance Computing instances Latency (round-trip) 50 hours
1 us-east - us-east — 12x c3.8xlarge < 0.1ms between all nodes 80 hours
c3.8xlarge o
E 70 hours .
< 0.1ms between eu-west = Computation phase
eu-west — eu-west — 8x c3.8xlarge c . .
2 nodes O 60 hours Risk analysis
c3.8xlarge eu-central — 4x c3.8xlarge = .
19ms — eu-west, eu-central S 50 houre 48:41:02 Aggregation
o
us-east — us-east — 4x c¢3.8xlarge 77ms — us-east, us-west g Upload
3 us-west — 4x c3.8xlarge 133ms — us-west, eu-west QO “0hours 33:34:07
c3.8xlarge
eu-west — 4x c3.8xlarge 76ms — us-east, eu-west 30 hours
22:38:25
Table 3: Descriptions of the three data sets used in the experiments 20 hours o52b57
10 hours =
02:55:40
No. of No. of transaction Total no. of Total raw 0 hours - ME— - T [—
companies partner pairs transactions XML data size
20k 40k 80k 20k 40k 80k
20 000 200 000 25 000 000 8.61GB Number of companies
40 000 400 000 50 000 000 17.26GB
80 000 800 000 100 000 000 34.51GB Figure 6: Running times of the computation using slower risk analysis algorithm

that does not rely on admissible leakage

BJSV15]

sharemind

Scalapility Example: Population-scale Statistical Studies

=
= TAX RECORDS

Tax and Customs Board

#o SHAREMIND &
IMPORTER
The data owner can maintain e et
control of processing by .:::.'.'.'i:"‘-i'.'. ________
co-hosting Sharemind. & et e e T
MINISTRY OF INFORMATION
FINANCE SYSTEMS
IT CENTER AUTHORITY
Sharemind achieves compliance
with privacy requirements and .
security policies by processing %
data in an encrypted form
MINISTRY OF INFORMATION
FINANCE SYSTEMS
IT CENTER AUTHORITY

Only final resultsare et e

published to the analyst

SHAREMIND ANALYTICS
AND REPORTING

& STUDENT RECORDS
=)

Ministry of Education and Science

SHAREMIND
IMPORTER

We generated two sets of test databases: a smaller set for correctness testing

that contained 354 education records and 8,201 tax records (test set A); and a
larger set that was comparable in size to the expected real dataset (test set B)

with 831,424 education records and 16, 205, 641 tax records. We used the larger
dataset to test performance on a SHAREMIND installation in a local area net-
work. The final real-world data imported by the data owners contained 623, 361
education records and 10,495, 760 tax records.

CYBERNETICA

CYBERNETICA

Relations between
working and and school

ETL script Test set B Real data
(Laboratory)|(Production)
(1) Aggregation of
education data 25 min 2h
(2) Aggregation of tax data
(monthly income) 18 h 10 min | 221 h 55 min
(3) Aggregation of tax data
(average yearly income) 1 h 55 min 15 h 14 min
(4) Joining the two datasets 32 min 4 h 15 min
(5) Compiling the analysis
table (shifting) 39 h 3 min | 141 h 11 min

dropout

Total ETL time

'sharemind.cyber.ee| BKKRST10]

60 h 5 min | 384 h 35 min
Table 1. Running times of the privacy-preserving ETL scripts on test set B in a
laboratory environment and the final imported data in the production environment.

Protocol

Programming
Paradigm

Philosophy

Advantages

Disadvantages

MPC Frameworks

Obliv-C

Yao's GO
(others possible)

C-compatible
DSL

Minimalism,
Be like C

s like C,
Compiled, fast

s like C,
No Floating Point

ObliVM

Yao's GC

Java-like DSL

Do the sensible
thing

Viany language
features

Complicated
Syntax

n-party LSS +
SHE

Python Library

No front-end
L anguage

Malicious or
Covert Security

Precomputation,
Leaky Abstraction

Sharemind

Multiple
‘Application
Server Platform”

Commercial,
Ever-growing

Diverse Toolset,
Vector-optimized

Commercial

Circult Structures

Circult Structures

1 function nmillionaires(array balances[n], var n, var X):
2 balances = sort(balances)
3 return balances|[:x]

Seems simple enough, right”
But how do we sort”

‘Standard” Sorts

Heapsort's data-dependent branches make it inefficient
Quicksort is totally unsuitable

Batchers Mergesort

function batcher_sort(array input[n], var n):
lower_half_sorted = batcher_sort(input[@:n/2])
upper_half_sortd = batcher_sort(input[n/2:n])
result = batcher_merge(lower_half_sorted, upper_half_sortd)
return input

U B WN =

Batchers Mergesort

Ooo~NOOULTE WNRE

function batcher_sort(array input[n], var n):

lower_half_sorted = batcher_sort(input[@:n/2])
upper_half_sortd = batcher_sort(input[n/2:n])

result = batcher_merge(lower_half_sorted, upper_half_sortd)
return input

function batcher_merge(array lower_half[n], array upper_half[n]):

lower_evens = even_elements(lower_half)

upper_evens = even_elements(upper_half)

lower_odds = odd_elements(lower_half)

upper_odds = odd_elements(upper_half)

merged_evens = batcher_merge(lower_evens, upper_evens)
merged_odds = batcher_merge(lower_odds, upper_odds)
merged_all = interleave(merged_evens, merged_odds)
result = compare_and_swap_neighbors(merged_all)

return result

A sorting algorithm with
NO data-dependent branches

Recursively Recursively
Sort Lower Half Sort Upper Half
Merge Even Merge Odd
ROWS ROWS

Compare Neighbor
Elements

Circult Structures

Batcher Merge O(nlogn) B6S

Batcher Odd-Even O(nlog®n) [B68]
\Vergesort

AKS Sorting Network O(nlogn) AKSE3]

VWaksman Permutation O(nlogn) V68|
Network

Circult Structures

Batcher Merge O(nlogn) B6S

Batcher Odd-BEven O(nlogn) [B68]
\Vergesort

AKS Sorting Network O(nlogn) AKSE3]

VWaksman Permutation O(nlogn) V68|
Network

1he Memory Problem

Oblivious Stack

Oblivious Stack

Oblivious Stack

7
L

Oblivious Stack

Oblivious Stack

..l |
]

mn
N

Oblivious Stack

Oblivious Stack

=

5 blocks
every access

10 blocks every
2nd access

20 blocks every
4th access

40 blocks every
8th access

Oblivious Stack

Amortized cost: 5 blocks per layer per access
Layers: O(logn)

Sublinear-time Memories

Stack, Queue O(logn) /E13]

Square-root ORAM O(sart(nlog®n)) [ZWRGDEK15]

Tree ORAM O(log>n) SDSFRYD13]
(Circuit, Path) WCS19]
Algorithm-Specific O(7?) BSA1S]

DEs10]

Sublinear-time Memories

Stack, Queue O(logn) /E13]

Sguare-root ORAM O(sart(nlog®n)) [ZAWRGDEK15]

Tree ORAM O(log=n) SDSFRYD13]
(Circuit, Path) WCS19]
Algorithm-Specific O(7?) BSA1S]

DEs16]

Custom Protocols

MPC Frameworks

Obliv-C ODIIVC.0rg
OblivM ODIIvM.com

SPD/ WWW.CS.bris.ac.uk/Besearch/
Cryptographysecurity/sPDZ

Sharemind Sharemind.cyoer.ee

|’:-
iy

‘/i; |) \;/ [4 [-/ 4

w b .:cwﬁ:""mm?\tt—vw'&‘ 2

-

Wi a,

b

