
On Private Supervised Distributed Learning:
Weakly Labeled and without Entity Resolution

Stephen Hardy† Wilko Henecka† Richard Nock†,‡
†Data61; ‡The Australian National University & the University of Sydney, Australia

first_name.last_name@data61.csiro.au

Abstract

We describe a system with strong privacy guarantees that is able to learn (super-
vised) linear classifiers in the challenging setting where data is distributed, entity
matching/resolution is not possible and not all parties have labels. The privacy
guarantees are due to the use of Rademacher observations (rados) for learning,
where these rados are calculated using only the functionality provided by partially
homomorphic encryption, which obscures the source data and provides realistic
learning times. Differentially private Rados can also be computed, leading to a
distributed machine learning algorithm guaranteeing the protection of both the data
sources (data remains private to the contributors) and its aftermath. An illustration
of the performances of the models is provided on two (synthetic+UCI) datasets.

1 Introduction

Machine Learning (ML) is more and more frequently subsumed by the more complex goal of learning
in a private setting [Enserink and Chin, 2015, Goroff, 2015]. More generally, the notion of data
security is a broad field concerned with fairness, accountability, correctness, secrecy and availability
issues regarding data [Canetti, 2006] — all these apply to ML to various extents depending on the
application domain, and in all cases, there is no tradeoff nor compromise with those requirements:
they are mandatory and thus adds constraints that essentially cannot be relaxed. Potential losses for
ML are from the computational [Dowlin et al., 2016] and accuracy standpoints [Goroff, 2015].

There are three essential settings to protect information or its aftermath [Dwork and Roth, 2014,
Goldreich, 1987]. Some naturally fit to learning from distributed data. Secure multiparty computation
(SMC) is one: p > 1 peers compute the input of a given function of all parties data, while keeping
their input secret from all other peers. Secrecy is guaranteed up to varying amounts of adversarial
behaviour, which can be collusion between parties or various degrees of honesty in the behaviour of
parties. (Homomorphic) public-key encryption (PKE) theoretically completely obfuscates data except
from the owner (of the private key). Homomorphic properties allow to perform certain operations on
the data in the clear ("plaintexts") via equivalent operations on cyphertexts. For example, in Paillier
cryptosystem [Paillier, 1999], the multiplication of two cyphertexts gives the encryption of the sum of
the two plaintexts. In general, secrecy relies on assumptions on the computational hardness of specific
decision problems, such as the decisional composite residuosity assumption for Paillier encryption
[Paillier, 1999]. Finally, Differential privacy (DP) modifies data with noise and provides protection
in a plausible deniability model: one can control how his/her presence in some data is going to affect
the outcome of some mechanisms [Dwork and Roth, 2014].

There are two key facts about these notions of privacy: they protect different things about data
and little to none are in fact 100% bullet proof [Kifer and Machanavajjhala, 2011] (at least up to
some assumptions). This suggests that composing privacy guarantees may be interesting to improve
protection, but this potentially comes with a composition of the associated constraints for learning,
and therefore may reduce its efficiency drastically. For example, when dealing with PKE, constraints

29th NIPS / Private Multi-Party Machine Learning Workshop (PMPML 2016), Barcelona, Spain.



Method Computes Protects Breach ? Ref.
SMC Distributed function Information sources Collusion, dishonesty [Goldreich, 1987]
PKE Information sharing Information sources Breaking assumptions [Goldreich, 1987]

DP Information sharing Information’s aftermath Side information [Kifer and Machanavajjhala, 2011]

Table 1: Comparison of SMC (secure multiparty computation), PKE (public key encryption) and DP
(differential privacy) from different standpoints. "Protection" summarizes the kind of protection they
provide. "Breach ?" summarizes the known breaches of privacy (with references, see text).

are such that the state of the art focusing on reasonably complex models (beyond linear separators)
actually just performs the classification step, not even learning [Bost et al., 2014, Dowlin et al., 2016].

In this paper, we provide the overview of a system that focuses on learning linear separators, in
a setting with the following key properties: (i) data is distributed among p ≥ 1 peers (or parties),
parties share some categorical features (e.g. gender, postcode, etc.). The classifier is learned on the
union of all peers’ features, but we do not need to perform entity matching (the task which consists in
finding who is who among datasets); finally, the task is weakly labeled as not all available data may
be labeled — in our case, only a subset of the parties may have labels. (ii) local label learning (LLP)
is achieved under Paillier cryptosystem’s encrypted domain — subsequent operations, up to learning
the classifier itself, can also be performed in the encrypted domain. Our protection level is therefore
primarily relevant to PKE (Table 1), but the technology we use, that builds upon recent results on loss
factorization and optimization [Nock, 2016, Nock et al., 2015, Patrini et al., 2014, 2016a,b], allows to
include DP / SMC related protections as well (i.e. protections that rely on computational or statistical
guarantees related to information sharing or the distributed computation itself [Nock et al., 2015]).

The rest of this paper is organized as follows: Sections 2 and 3 present key definitions and sketch our
system. Section 4 provides experiments. A last Section (5) concludes.

2 Definitions

Privacy notions: Table 1 summarizes the three different types of protection we are interested in,
their purpose, the protection they give and the eventual forms of (known) breaches. We refer to
Goldreich [1987] for more details on SMC and PKE, and Kifer and Machanavajjhala [2014] (and
references therein) for DP. Our system’s protection essentially covers PKE and DP.

Learning setting: our setting is binary classification with linear models θ: we want to learn a
predictor or classifier for label (or class) y ∈ Y

.
= {−1,+1}, where the classifier is a function from an

observation (or feature) space, X, to Y. As in supervised learning, the input of learning are examples,
that is, observation-label pairs. However, in our distributed setting, we do not have access to a training
sample S

.
= {(xi, yi), i ∈ [m]} ([n]

.
= {1, 2, . . . , n} for n ∈ N∗). Rather, we have p (sub)samples

(one for each party), Sj of size mj , j ∈ [p] for some p ≥ 1. Each one is defined on its own feature
space Xj .

= ×k∈Fj
Xk, where Fj ⊆ [d],∀j (d is the total number of distinct features among peers).

We assume that a subset of features is shared: ∃F∗ ⊂ [d] such that F∗ ⊆ Fj , ∀j ∈ [p]. This setting is
realistic: in many scenarios, all peers (including e.g. insurance companies, banks, telecommunication
companies, government agencies) would share at least few features in their data, such as birthdate,
postcode, gender of their customers. Figure 1 (left) presents the overall distributed learning setting.
We also assume that even when not all peers have labels, at least one peer has its data fully labeled. It
is challenging but very relevant not to assume that all parties have labels, e.g. for a specific credit
scoring application in which a bank leverages upon the unsupervised data of an insurance company.
The learning setting (weakly labeled, no entity matching) blends those of [Patrini et al., 2014, 2016b].

Homomorphic cryptosystem: we use a PKE cryptosystem with (partial) homomorphic properties:
Paillier encryption [Paillier, 1999]. Given number n and associated encryption [[n]], the homomorphic
property states that the encryption of some function f of n, n′ can be computed as a function g of
their encryption: [[f(m,m′)]] = g([[m]], [[m′]]). Paillier is additively homomorphic (f=arithmetic
addition). It also allows the multiplication of an encrypted number by a plaintext number.

Compute setting: our machine learning system is built on top of a REST-ful distributed computing
API implemented in Java, with cryptographic primitives supported natively within the system,

2



Pp

P2
P1

Pp�1

bank insurance telco govt…

partially homomorphic encryption
rados

label
learner

shared features
Pp

P2
P1

Pp�1

bank insurance telco govt…

partially homomorphic encryption

label

LLP ✓
Pp

P2
P1

Pp�1

bank insurance telco govt…

partially homomorphic encryption
rados

learner

rados

Figure 1: (Left) Our setting: p > 1 parties, one (or few, not necessarily all) have labels, each has
observation features distinct from the others, all share some common features, and no entity matching
can be performed between parties. Our system proposes an end-to-end solution for supervised learning
of θ in a distributed and private setting (with respect to encryption and additional privacy guarantees
provided by rados, see text). θ classifies using all peers’ features (i.e. maps to
classes). Center+right: learning is performed in two steps. First (center), all parties compute their
own labels using (private) learning from label proportions. Second (right) each party crafts its own
share of basic block rados sent to the learner, which assembles rados and learns θ.

including Paillier encryption1. The network transport layer is HTTPS, and there is an additional
authorisation layer which specifies which parties can compute over which data with which algorithms.
Currently the system supports a variety of machine learning tasks, including the linear supervised
learning approaches described here, as well as a variety of unsupervised learning tasks over both
vertically and horizontally partitioned data.

Rademacher observations and supervised learning: suppose without loss of generality that we
have one sample S fully labeled. (Linear) Supervised learning proceeds with the minimization of a
specific loss function, which can be for example the logistic loss (logloss):

Flog (S, θ)
.
=

1

m

∑
i

log
(
1 + exp

(
−yiθ>xi

))
. (1)

It was recently remarked that this task is equivalent to the minimization of an equivalent task over
a different kind of input known as Rademacher observations (rados): letting Σm

.
= {−1, 1}m and

σ ∈ Σm, the rado πσ with signature σ is πσ
.
= (1/2) ·

∑
i(σi +yi)xi (informally, one rado is a sum

of the edge vectors of examples over a subset of data). We insist on the fact that this equivalence is
tight: ∃h : R→ R strictly increasing and another loss, called the exponential rado loss, F r

exp(S, θ,U),
defined over rados (and not examples) where U ⊆ Σm defines a subset of all 2m rados, such that

Flog (S, θ) = h(F r
exp(S, θ,Σm)) , (2)

and this holds regardless of classifier θ and training sample S. Even more, this holds for other losses
as well (such as the square loss and unhinged loss) and for regularized losses as well [Nock, 2016,
Patrini et al., 2016b]. It is not our objective to detail this general equivalence, which can be found
in the related papers. For the purpose of our setting, one may keep in mind that (i) rados allow to
learn in a distributed environment without carrying entity matching [Patrini et al., 2016b], and (ii)
rados bring additional privacy guarantees for examples that supervised learning from examples alone
may not bring [Nock et al., 2015], depending on the side information available to an attacker. For
example, (a) it is NP-hard to answer whether a given set of rados was crafted from a specific subset
of examples; (b) It is geometrically hard (protection holds regardless of the computational power) to
reconstruct examples from a set of rados, even knowing an approximate size of the examples data.

3 Our approach

Even without privacy requirements, the main challenges to our distributed learning setting is that (i)
entity matching is not available and (ii) labels are not available everywhere. We have combined the
ingredients described in the preceding Section to obtain a system summarized in Figure 1 (left). To
be more specific, the system implements the following features:

1https://github.com/NICTA/javallier

3



E-LR*SGD

E-LR
R-RS

R-DRL
R-RB(0)

R-RB(100)

R-RB(10 000)
E-LR

E-LR

Peer 2’s ROC
R-DRL
(Peer 2 has labels)

Peer 1’s ROC
R-DRL
(Peer 1 has labels)

Uplift provided by Peer 1’s 
unlabelled data

Uplift provided by Peer 2’s 
unlabelled data

Figure 2: Experiments run on our simulated data (left) and UCI splice (right, see text for details).

• the complete set of operations that go from the weakly labeled distributed datasets to the output
of a classifier are all performed in the encryption of Paillier cryptosystem;

• the process includes the following steps, in this order: (i) fitting the labels by the unsupervised
peers using LLP (Learning from Label Proportions, Patrini et al. [2014]), where the label
proportions are encrypted; (ii) crafting of rados by peers, sent to the learner that builds the
training rado sample [Patrini et al., 2016b], (iii) learning classifier θ from the rado sample.

Figure 1 (center + right) summarizes the two main steps of supervised learning (computing labels,
learning the classifier) in our system, along with the protection guarantees involved.

4 Experiments

We report two simple toy experiments (p = 2) with our system. The first is with a simulated dataset
(d = 83, mixture of Gaussians generated so that Bayes optimal classifier is a linear classifier; the
full domain contains 100 000 examples, out of which 25 000 are used for training when full entity
matching is available; in this case, the dataset is vertically split between peers). The second is with
UCI domain Splice [Bache and Lichman, 2013]. Figure 2 presents our results as ROC curves (the
dashed line is random guessing). Each algorithm is indicated as "X-Y" plus two checkboxes. X
indicates which kind of data were used, E for examples and R for rados. The two checkboxes indicate,
when checked, whether the full process is carried out in the encrypted domain (left) and distributed
(right). Y is the type of algorithm used: LR means logistic regression (SGD means stochastic gradient
descent, otherwise gradient descent is used); RB is RadoBoost [Nock et al., 2015, Nock, 2016] (the
number in parenthesis indicates regularization strengthω, Nock [2016]); DRL is the Distributed Rado
Learn algorithm of Patrini et al. [2016b] (p = 2 peers). Regularizations used is Ridge. For example,
"R-DRL " indicates DRL, as in Patrini et al. [2016b], but fully run in the Paillier encryption
domain. On UCI splice, we focus on DRL and depict performances of each peer to show the leverage
of DRL depending on who has labels (LLP follows [Patrini et al., 2014]; first ten features shared,
rest split evenly among peers). Globally, results demonstrate the uplift that can be obtained on the
performances of one dataset using the contribution of other datasets, even without entity resolution.

5 Conclusion

We have presented a system which is able to learn linear separators from distributed data, with
the following key features: from LPP up to all computations take place in Paillier’s homomorphic
encryption domain, datasets are distributed and they can be weakly labeled. Moreover, the system
makes use of the recently introduced concept of Rademacher observations to kill two additional birds
in one shot: add further protection layers to encryption, and learn without requiring the parties to
perform entity resolution / matching on the distributed data. Because Paillier encryption is additively
homomorphic, it makes it particularly easy to craft Rademacher observations in the encrypted domain.
Our system illustrates the potential of Rademacher observations for private multiparty learning.

4



References
K. Bache and M. Lichman. UCI machine learning repository, 2013.
R. Bost, R.-A. Popa, S. Tu, and S. Goldwasser. Machine learning classification over encrypted data.

Cryptology ePrint Archive, Report 2014/331, 2014.
R. Canetti. Security and composition of cryptographic protocols: A tutorial. Cryptology ePrint

Archive, Report 2006/465, 2006.
N. Dowlin, R. Gilad-Bachrach, K. Laine, K. Lauter, M. Naehrig, and J. Wernsing. Cryptonets:

Applying neural networks to encrypted data with high throughput and accuracy. In 33rd ICML,
pages 201–210, 2016.

C. Dwork and A. Roth. The algorithmic foudations of differential privacy. Found. & Trends in TCS,
9:211–407, 2014.

M. Enserink and G. Chin. The end of privacy. Science, 347:490–491, 2015.
O Goldreich. Foundatins of Cryptography. Cambridge University Press, 1987.
D.-L. Goroff. Balancing privacy versus accuracy in research protocols. Science, 347:479–480, 2015.
D. Kifer and A. Machanavajjhala. No free lunch in data privacy. In 37th ACM SIGMOD, pages

193–204, 2011.
D. Kifer and A. Machanavajjhala. Pufferfish: A framework for mathematical privacy definitions.

ACM Trans. on Database Systems, 39:3, 2014.
R. Nock. On regularizing rademacher observation losses. In NIPS*29, 2016.
R. Nock, G. Patrini, and A Friedman. Rademacher observations, private data, and boosting. In 32nd

ICML, pages 948–956, 2015.
P. Paillier. Public-key cryptosystems based on composite degree residuosity classes. In EUROCRYPT,

pages 223–238, 1999.
G. Patrini, R. Nock, P. Rivera, and T. Caetano. (Almost) no label no cry. In NIPS*27, 2014.
G. Patrini, F. Nielsen, R. Nock, and M. Carioni. Loss factorization, weakly supervised learning and

label noise robustness. In 33rd ICML, pages 708–717, 2016a.
G. Patrini, R. Nock, S. Hardy, and T. Caetano. Fast learning from distributed datasets without entity

matching. In 25 th IJCAI, pages 1909–1917, 2016b.

5


