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Abstract

We propose a practical solution to performing simple cross-user machine learning
on a sensitive dataset distributed among a set of users with privacy concerns.
We focus on a scenario in which a single company wishes to obtain the distribution
of aggregate features, while ensuring a high level of privacy for the users. We are
interested in the case where users own devices that are not necessarily powerful or
online at all times, like smartphones or web browsers. This premise makes general
solutions, such as general multiparty computation (MPC), less applicable.
We design an efficient special-purpose MPC protocol that outputs aggregate fea-
tures to the company, while keeping online presence and computational complexity
on the users’ side at a minimum. This basic protocol is secure against a majority of
corrupt users, as long as they do not collude with the company. If they do, we still
guarantee security, as long as the fraction of corrupt users is lower than a certain,
tweakable, parameter. We propose different enhancements of this solution: one
guaranteeing some degree of active security, and one that additionally ensures dif-
ferential privacy (DP). Finally, we report on the performance of our implementation
of the above solutions.

1 Introduction

Many people make decisions based on recommendations: from trivial tasks like choosing restaurants,
to more important ones such as choosing the right school or doctor. With the advent of the Internet,
these recommendations are shifting from being a word of mouth to being delivered to users through
their computers or phones, via data aggregation services that compile several users’ experiences into
easy-to-understand recommendations.

This change yields immediate and more accurate answers to the users, and is a profitable opportunity
for the service-providing companies. Moreover, the techniques used to solve this type of problems
are also extendable to many other settings such as surveys, analytics, and probabilistic models; in
general, these applications fall in the area of machine learning and (automated) statistics.

However, this shift introduces new challenges that were not apparent before. By large, data aggrega-
tion is performed on the users’ data after it is stored in the clear on the company’s servers. This can
be a risk for both the users and the company: the users may be concerned about how their data is
used by the company beyond the intended service, and hence they may be reluctant to share relevant
but sensitive data; at the same time, the company may worry about possible data breaches, which can
compromise the users’ trust in the company and damage its reputation and business, or even worse,
have legal consequences.

Data aggregation, providing immense potential but at the same time posing great privacy issues,
hence looks like a double-edged sword – this is not the case though, and while there exist general
techniques to mitigate the downsides, we are here interested in a more specific practical question:

Can we develop a real-world system that allows statistical computation
over the users’ private inputs, without revealing them?
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In this paper we answer this question by proposing an efficient technical solution for performing data
aggregation in a way that minimises privacy-related issues for both the service-providing company
and the users. We can think of a set of N users, where each user Pi has a private input xi, and the
company has a server S and wants to obtain the (anonymized) distribution D of the xi (so that S can
compute statistical functions or run some machine learning on it), and nothing more.

General Setting We assume that the set of users is dynamic (as in: changing over time) and
not necessarily large, and that user devices have limited computational power and are sporadically
available. As for the company, we may imagine a small company or a start-up launching a new digital
assistant on smartphones, or any other app that offers data aggregation services.

This setting models many real-world scenarios, such as website users who only make a few visits,
mobile users who download an app and uninstall it after a while, and sensors with limited lifespan.
While this is our primary focus, our solution will work well even for less challenging scenarios, such
as bigger companies that have the resources to partner with external parties1 that are somehow trusted
by the users – this makes matters easier because it allows us to reliably run a secure multi-party
computation (MPC) protocol between the company and its partners to deliver (only) the result to
the company; however, we seek not to rely on such partners, since a small company or a start-up
developing a new service might not have the means to establish these partnerships. Specifically, we
are in a scenario where we would like to use MPC, but there is only a single powerful party, the
company, who is reliably online, and the rest are computationally weak and seldom online.

Corruptions Our aim is to protect against possible hackers who retrieve the company’s data after
the computation, and against company employees who have access to all the data stored at the
company. However, we assume that the code run by honest players follows the protocol, even if this
code is provided by the company. One justification for this assumption might be that the company
judges it irrational to modify the source code, perhaps because the risk of honest employees or reverse
engineers raising a flag would be too high. We formalise this by considering active security. Also, we
want both the honest users’ inputs and the output to be kept private from any set of corrupt parties
(not colluding with the company).

These are the vital privacy and security guarantees that we require; jumping ahead, our protocol
satisfies even stronger ones: namely, we maintain security also if the server gets corrupted together
with any set of other players, as long as among these players there is only a small number of special
users, called clerks, that in some sense simulate a partner (as described above) for the company.

1.1 Related work

Multi-party computation (MPC) General MPC solutions [Yao82, GMW87, BGW88, CCD88],
even the most recent and practical ones [DPSZ12, DKL+13, ZRE15, KOS16], are not particularly
well-suited for our setting, because they usually require several players to have a (powerful) computer
whose public identity is known by everyone and which is online essentially at all times during the
computation. These systems, however, may be used to compute arbitrary functions and in some cases
offer stronger security guarantees with respect to corruption.

Server-Aided MPC Our setting carries similarities to server-aided MPC [FKN94, DI05, DIK+08,
BCD+09, KMR11], where the players are split into input providers and a few servers who receive the
inputs and carry out the computation between them. In our setting, though, there is only one server,
and the input providers are weak and seldom online. We argue that this scenario is closer to the real
world for many companies, where users can join and leave the computation at any point, and are
only willing to spend a small amount of resources, while the company, with substantial benefits from
offering the service, has a strong incentive to invest in computational power and online presence.

(Somewhat) Homomorphic Encryption Homomorphic encryption schemes [BV11, BGV12,
FV12] are good candidates for our task: users encrypt their inputs under the same public encryption
key, send these encryptions to the company who, not knowing the decryption key, homomorphically

1For example, governments or independent institutions such as the Electronic Frontier Foundation.

2



aggregates all values into a single encryption.2 This is then sent to a decryptor that has the private
decryption key and can deliver the output. This puts large requirements on the decryptor, both in
protecting the key and ensuring availability. Splitting the decryption key [DJ01, RN10] between a
group of decryptors is one remedy, but can have the downside of a complex key generation proto-
col, with expensive interaction or orchestration between the decryptors [HMRT12, LTV12, HLP11].
Our protocol follows a similar approach, but requires almost no interaction and no full-time online
presence.

Differential Privacy An alternative to the cryptographic solutions is for the users to add a small
amount of “noise” to their inputs before sending them unencrypted to the server [EPK14]. This
approach guarantees privacy yet requires no third party to hold the decryption key. Moreover, it is
extremely efficient both computationally and in terms of data transmission, and allows the company
to mix and re-use the noisy inputs for different computations without having to re-run any input
protocols. However, because the noise accumulates in the output, large amounts of data is needed
before the signal overpowers the noise, making this more appropriate for “Internet scale” data sets
and less attractive for e.g. smaller companies and start-ups.

2 Secure aggregation

Our protocol for aggregating the input vectors into a sum is divided into two phases: in the input
phase, each user processes his input and sends an encryption of this to the server, as well as shares
the decryption key among the clerks; in the computation phase, the server combines the encrypted
inputs to form an encryption (via a joint key) of the aggregation, and the clerks locally combine their
key shares and send them to the server, so that the latter can retrieve the joint key that decrypts (only)
the aggregation. Notice that the users are only required to participate in one round (the input phase).
This makes it easy to achieve active security, if we assume an honest bulletin board or point-to-point
channels. Moreover, by using standard public key techniques we may accumulate the decryption
keys on a public server, thereby eliminating the need online presence for the clerks in the input phase.

The encryption scheme for our concrete applications is a simple one-time pad, which satisfies the
properties needed and is very lightweight. Moreover, it ensures that the clerks can combine the
decryption keys in a short session and without interacting with each other. To gain flexibility in the
choice of clerks, we use a secret sharing scheme [Sha79] to split each decryption key into shares sent
to the clerks. This not only allows a fraction of the clerks to be offline at decryption time, but also
raises the number of clerks that must collaborate with the server to collectively break privacy.

More specifically, our basic aggregation protocol operates as follows: to share input vector xi,
user Pi samples a uniform one-time pad pi, sends xi + pi to the server, and uses a (n, t)-linear
secret sharing [CDM00] to split pi into n shares that are finally distributed to the n clerks. Here, t,
the privacy threshold, is a public parameter chosen together with n, the number of clerks. In the
computation phase, the clerks simply sum their individual shares and send this to the server, allowing
it to recover p =

∑
pi. Subtracting p from

∑
(xi + pi) yields x =

∑
xi as desired, and nothing else.

Theorem 2.1 (informal). The above protocol is secure against an adversary that corrupts any set of
participants, as long as either: 1) the server is not corrupt; or 2) the server is corrupt together with
at most t clerks. Security, here, is in the universally composable model [Can01].

Notice that, as previously mentioned, not all clerks are required to be online for the computation
phase: specifically, only r of them are required to be online, where r is the reconstruction threshold
of the secret sharing scheme used (for plain Shamir secret sharing, r = t+ 1).

By replacing the secret sharing with a packed/ramp one, we may better distribute the load across
clerks. This can be achieved by using a variant of Shamir secret sharing: instead of sampling a
polynomial of degree t per input, we can sample a polynomial of degree t+ k− 1 that packs k values
together, without increasing the number or size of the shares. This yields a reconstruction threshold
of t+ k, and forces n ≥ t+ k. While to achieve the same privacy the number of clerks increases
additively by k, the number of shares sent to each clerk is decreased multiplicatively by k.

2Notice that the degree of homomorphicity can be lowered to additive, such as Paillier [Pai99] or LWE-
based [Reg05, LP11], if the aggregation is a linear function.
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3 Differentially private aggregation

While the secure aggregation protocol ensures privacy in a cryptographical sense, it doesn’t account
for information leakage from the final aggregation. Following by-now standard practice, we may
employ (global) differential privacy [DR14] as a way of quantifying and mitigating leakage. In this
framework, uncertainty is used to reason about the privacy loss endured by any single individual,
with our specific approach being to add randomness drawn according to certain distributions to the
output. However, for privacy it is crucial that this randomness, or noise, remains unknown.

It is well-known that adding noise drawn according to a Gaussian distribution can be used to ensure
differential privacy, and the divisibility of this distribution makes it particular well-suited for our
distributed setting: each clerk simply draws a sample, secret shares this with the other clerks, and
append these noise shares to the existing set of input shares. This exchange requires a synchronisation
between the clerks, but may be run in parallel with the input providers delivering their inputs.

Theorem 3.1 (informal). The above protocol for data aggregation ensures differential privacy
additionally to security against an adversary like in Theorem 2.1.

Adding noise from a Laplace distribution in a distributed setting is less straight-forward. However,
since it may be characterised by the squared sum of four Gaussian distributions, we may use a
multiplicative property of the secret sharing scheme to achieve this for a lower privacy threshold.

4 Applications and experiments

The ability to sum vectors has several applications, and besides the cases of analytics and surveys, we
may also generate probability distributions for Bayesian graphical models. In both cases below, we
assume a minimum privacy threshold of n

5 and a maximum reconstruction threshold of 4n
5 .

4.1 Drug-use survey

To test the applicability of our protocol we consider a real-world study [BF15] on the drug use among
different age groups; quoting, the aim of the study is “to see what drugs baby boomers are taking
now, whether their patterns of use different from other age groups, and how similar people within the
baby-boomer cohort are when it comes to drug use”. Given the sensitive nature of these questions,
surveys for building such data sets seem likely to benefit from strong privacy guarantees.

We ask under which parameter settings our protocol would have been efficient enough to carry out
the data collection process for the more than 55, 000 users. We focus on clerks running on mobile
phones or in web browsers and estimate the amount of data each of them must download.

To match the study we consider 17 age groups and 13 drugs that users may or may not have used.
To manage the dimensionality, we essentially run 13 aggregations in parallel on input vectors of
dimension 17 · 2. For a setting with 27 clerks, the estimated download size of each is less than 15MB,
and for a setting with 81 clerks this drops to less than 5MB.

4.2 Next-place recommendation

Using their built-in sensors, mobile phones may autonomously compile local data sets allowing
them to make predictions regarding their user. For example, a history of the user’s previous where-
abouts may be used to recommend relavant places of interest in the current context. Concretely, by
maintaining the corresponding frequency table we can use likelihood function

Pr [Category,Popularity,Home,Work |Weather,Time,Day]

to suggest the most likely next place(s) given a set of nearby places (as e.g. provided through a
third-party service such as Foursquare).

However, to share patterns discovered in the behaviour of several users, and to provide new users
with a good model straight away, we must combine such frequency tables with sensitive data from
several users. Using a setting with 728 clerks, we can combine tables of cardinality 20, 160 from
10, 000 users by asking each clerk to download less than 3MB.
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