
Federated Learning:
Strategies for Improving Communication Efficiency

Jakub Konečný†∗ H. Brendan McMahan‡ Felix X. Yu‡
Peter Richtárik† Ananda Theertha Suresh‡ Dave Bacon‡

†University of Edinburgh ‡Google
J.Konecny@sms.ed.ac.uk, {mcmahan, felixyu}@google.com

peter.richtarik@ed.ac.uk, {theertha, dabacon}@google.com

Abstract

Federated Learning is a machine learning setting where the goal is to train a high-
quality centralized model with training data distributed over a large number of
clients each with unreliable and relatively slow network connections. We consider
learning algorithms for this setting where on each round, each client independently
computes an update to the current model based on its local data, and communicates
this update to a central server, where the client-side updates are aggregated to
compute a new global model. The typical clients in this setting are mobile phones,
and communication efficiency is of utmost importance. In this paper, we propose
two ways to reduce the uplink communication costs. The proposed methods are
evaluated on the application of training a deep neural network to perform image
classification. Our best approach reduces the upload communication required to
train a reasonable model by two orders of magnitude.

1 Introduction

As datasets grow larger and models more complex, machine learning increasingly requires distributing
the optimization of model parameters over multiple machines. Existing machine learning algorithms
are designed for highly controlled environments (such as data centers) where the data is distributed
among machines in a balanced and i.i.d. fashion, and high-throughput networks are available. Feder-
ated learning [10, 14, 9] proposes an alternative setting, where we train a shared global model under
the coordination of a central server, from a federation of participating devices. The participating
devices (clients) are typically large in number and have slow or unstable internet connections. A
motivating example for federated optimization arises when the training data is kept locally on users’
mobile devices, and the devices are used as nodes performing computation on their local data in
order to update a global model. The above framework differs from conventional distributed machine
learning [18, 12, 20, 23, 5, 4] due to the the large number of clients, highly unbalanced and non-i.i.d.
data and unreliable network connections. Federated learning offers distinct advantages compared
to performing learning in the data center. The model update is generally less privacy-sensitive than
the data itself, and the server never needs to store these updates. Thus, when applicable, federated
learning can significantly reduce privacy and security risks by limiting the attack surface to only
the device, rather than the device and the cloud. This approach also leverages the data-locality and
computational power of the large number of mobile devices.

For simplicity, we consider synchronized algorithms for federated learning [14, 3], where a typical
round consists of the following steps:

1. A subset of clients is selected, each of which downloads the current model.
∗Work performed while at Google, Inc.

29th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.

2. Each client in the subset computes an updated model based on their local data.
3. The updated models are sent from the selected clients to the sever.
4. The server aggregates these models (typically by averaging) to construct an improved global

model.

A naive implementation of the above framework requires that each client sends a full model (or a
full model gradient) back to the server in each round. For large models, this step is likely to be the
bottleneck of federated learning due to the asymmetric property of internet connections: the uplink is
typically much slower than downlink. The US average broadband speed was 55.0Mbps download vs.
18.9Mbps upload, with some ISPs being significantly more asymmetric, e.g., Xfinity at 125Mbps
down vs. 15Mbps up [1]. It is therefore important to investigate methods which can reduce the uplink
communication cost. In this paper, we study two general approaches:

• Structured updates, where we learn an update from a restricted lower-dimensional space.
• Sketched updates, where we learn a full model update, but then compress it before sending

to the server.

These approaches can be combined, e.g., first learning a structured update and then sketching it;
however, we do not experiment with this combination in the current work.

In the following, we formally describe the problem. The goal of federated learning is to learn a model
with parameters embodied in a real matrix W ∈ Rd1×d2 from data stored across a large number of
clients. We first provide a communication-naive version of the federated learning. In round t ≥ 0, the
server distributes the current model Wt to a subset St of nt clients (for example, to a selected subset
of clients whose devices are plugged into power, have access to broadband, and are idle). These
clients independently update the model based on their local data. Let the updated local models be
W1

t ,W
2
t , . . . ,W

nt
t , so the updates can be written as Hi

t := Wi
t −Wt, for i ∈ St. Each selected

client then sends the update back to the sever, where the global update is computed by aggregating2

all the client-side updates:
Wt+1 = Wt + ηtHt, Ht :=

1
nt

∑
i∈St

Hi
t.

The sever chooses the learning rate ηt (for simplicity, we choose ηt = 1). Recent works show that a
careful choice of the server-side learning rate can lead to faster convergence [13, 12, 10].

In this paper, we describe federated learning for neural networks, where we use a separate 2D matrix
W to represent the parameters of each layer. We suppose that W gets right-multiplied, i.e., d1 and d2
represent the output and input dimensions respectively. Note that the parameters of a fully connected
layer are naturally represented as 2D matrices. However, the kernel of a convolutional layer is a 4D
tensor of the shape #input × width × height ×#output. In such a case, W is reshaped from the
kernel to the shape (#input× width× height)×#output.

The goal of increasing communication efficiency of federated learning is to reduce the cost of sending
Hi

t to the server. In this paper, we propose two general strategies of achieving this, discussed next.

2 Structured Update

The first type of communication efficient update restricts the updates Hi
t to have a pre-specified

structure. Two types of structures are considered in the paper:

Low rank. We enforce Hi
t ∈ Rd1×d2 to be low-rank matrices of rank at most k, where k is a

fixed number. We express Hi
t as the product of two matrices: Hi

t = Ai
tB

i
t, where Ai

t ∈ Rd1×k,
Bi

t ∈ Rk×d2 , and Ai
t is generated randomly and fixed, and only Bi

t is optimized. Note that Ai
t can

then be compressed in the form of a random seed and the clients only need to send Bi
t to the server.

We also tried fixing Bi
t and training Ai

t, as well as training both Ai
t and Bi

t; neither performed as
well. Our approach seems to perform as well as the best techniques considered in [6],

Random mask. We restrict the update Hi
t to be sparse matrices, following a pre-defined random

sparsity pattern (i.e., a random mask). The pattern is generated afresh in each round and for each
client. Similar to the low-rank approach, the sparse pattern can be fully specified by a random seed,
and therefore it is only required to send the values of the non-zeros entries of Hi

t. This strategy
can be seen as the combination of the master training method and a randomized block coordinate
minimization approach [16, 15].

2A weighted sum might be used to replace the average based on specific implementations.

2

3 Sketched Update

The second type of communication-efficient update, which we call sketched, first computes the full
unconstrained Hi

t, and then encodes the update in a (lossy) compressed form before sending to the
server. The server decodes the updates before doing the aggregation. Such sketching methods have
application in many domains [21]. We propose two ways of performing the sketching:

Subsampling. Instead of sending Hi
t, each client only communicates matrix Ĥi

t which is formed
from a random subset of the (scaled) values of Hi

t. The server then averages the sampled updates,
producing the global update Ĥt. This can be done so that the average of the sampled updates is an
unbiased estimator of the true average: E[Ĥt] = Ht. Similar to the random mask structured update,
the mask is randomized independently for each client in each round, and the mask itself is stored as
a synchronized seed. It was recently shown that, in a certain setting, the expected iterates of SGD
converge to the optimal point [19]. Perturbing the iterates by a random matrix of zero mean, which is
what our subsampling strategy would do, does not affect this type of convergence.

Probabilistic quantization. Another way of compressing the updates is by quantizing the weights.
We first describe the algorithm of quantizing each scalar to one bit. Consider the update Hi

t, let
h = (h1, . . . , hd1×d2

) = vec(Hi
t), and let hmax = maxj(hj), hmin = minj(hj). The compressed

update of h, denoted by h̃, is generated as follows:

h̃j =

{
hmax, with probability hj−hmin

hmax−hmin

hmin, with probability hmax−hj

hmax−hmin

.

It is easy to show that h̃ is an unbiased estimator of h. This method provides 32× of compression
compared to a 4 byte float. One can also generalize the above to more than 1 bit for each scalar.
For b-bit quantization, we first equally divide [hmin, hmax] into 2b intervals. Suppose hi falls in the
interval bounded by h′ and h′′. The quantization operates by replacing hmin and hmax of the above
equation by h′ and h′′, respectively. Incremental, randomized and distributed optimization algorithms
can be similarly analyzed in a quantized updates setting [17, 8, 7].

Improving the quantization by structured random rotations. The above 1-bit and multi-bit quan-
tization approaches work best when the scales are approximately equal across different dimensions.
For example, when max = 100 and min = −100 and most of values are 0, the 1-bit quantization
will lead to large quantization error. We note that performing a random rotation of h before the
quantization (multiplying h by an orthogonal matrix) will resolve this issue. In the decoding phase,
the server needs to perform the inverse rotation before aggregating all the updates. Note that in
practice, the dimension of h can be as high as d = 1e6, and it is computationally prohibitive to
generate (O(d3)) and apply (O(d2)) a rotation matrix. In this work, we use a type of structured
rotation matrix which is the product of a Walsh-Hadamard matrix and a binary diagonal matrix,
motivated by the recent advance in this topic [22]. This reduces the computational complexity of
generating and applying the matrix to O(d) and O(d log d).

4 Experiments

We conducted the experiments using federated learning to train deep neural networks for the CIFAR-
10 image classification task [11]. There are 50,000 training examples, which we partitioned into
100 clients each containing 500 training examples. The model architecture was taken from the
TensorFlow tutorial [2], which consists of two convolutional layers followed by two fully connected
layers and then a linear transformation layer to produce logits, for a total of over 1e6 parameters.
While this model is not the state-of-the-art, it is sufficient for our needs, as our goal is to evaluate our
compression methods, not achieve the best possible accuracy on this task.

We employ the Federated Averaging algorithm [14], which significantly decreases the number of
rounds of communication required to train a good model. However, we expect our techniques will
show a similar reduction in communication costs when applied to synchronized SGD. For Federated
Averaging, on each round we select 10 clients at random, each of which performs 10 epochs of SGD
with a learning rate of η on their local dataset using minibatches of 50 images, for a total of 100 local
updates. From this updated model we compute the deltas for each layer Hi

t.

3

Table 1: Low rank and sampling parameters for the CIFAR experiments. The Sampling Probabilities column
gives the fraction of elements uploaded for the two convolutional layers and the two fully-connected layers,
respectively; these parameters are used by StructMask, SketchMask, and SketchRotMask. The Low Rank
column gives the rank restriction k for these four layers. The final softmax layer is small, so we do not compress
updates to it.

(Low) Rank Sampling Probabilities model size reduction
Full Model (baseline) 64, 64, 384, 192 1, 1, 1, 1 4.075 MB —
Medium subsampling 64, 64, 12, 6 1, 1, 0.03125, 0.03125 0.533 MB 7.6×
High subsampling 8, 8, 12, 6 0.125, 0.125, 0.03125, 0.03125 0.175 MB 23.3×

0 1000 2000 3000 4000

Total upload communication (MB)

0.60

0.65

0.70

0.75

0.80

T
e
st

 s
e
t

a
cc

u
ra

cy

Medium subsampling (7.6×)

0 1000 2000 3000 4000

Total upload communication (MB)

0.60

0.65

0.70

0.75

0.80

T
e
st

 s
e
t

a
cc

u
ra

cy

High subsampling (23.3×)

101 102 103

Total upload MB (log-10 scale)

0.60

0.65

0.70

0.75

0.80

T
e
st

 s
e
t

a
cc

u
ra

cy

Medium subsampling (7.6×)

0 200 400 600 800

communication rounds

0.60

0.65

0.70

0.75

0.80

T
e
st

 s
e
t

a
cc

u
ra

cy

Medium subsampling (7.6×)

Baseline, η=0.106
SketchMask, η=0.075
StructLowRank, η=0.3
StructMask, η=0.3

0 200 400 600 800

communication rounds

0.60

0.65

0.70

0.75

0.80

T
e
st

 s
e
t

a
cc

u
ra

cy

High subsampling (23.3×)

Baseline, η=0.106
SketchMask, η=0.075
StructLowRank, η=0.106
StructMask, η=0.849

0 200 400 600 800

communication rounds

0.60

0.65

0.70

0.75

0.80

T
e
st

 s
e
t

a
cc

u
ra

cy

Medium subsampling (7.6×)

Baseline, η=0.106
SketchMask, η=0.075
SketchMaskBin, η=0.038
SketchRotMask, η=0.106
SketchRotMaskBin, η=0.053

Figure 1: Non-quantized results (left and middle columns), and results including binary quantization (dashed
lines SketchRotMaskBin and SketchMaskBin, right column). Note the x-axis is on a log scale for top-right
plot. We achieve over 70% accuracy with fewer than 100MB of communication.

We define medium and high low-rank/sampling parameterizations that result in the same compression
rates for both approaches, as given in Table 1. The left and center columns of Figure 1 present non-
quantized results for test-set accuracy, both as a function of the number of rounds of the algorithm,
and the total number of megabytes uploaded. For all experiments, learning rates were tuned using a
multiplicative grid of resolution

√
2 centered at 0.15; we plot results for the learning rate with the

best median accuracy over rounds 400 – 800. We used a multiplicative learning-rate decay of 0.988,
which we selected by tuning only for the baseline algorithm.

For medium subsampling, all three approaches provide a dramatic improvement in test set accuracy
after a fixed amount of bandwidth usage; the lower row of plots shows little loss in accuracy as
a function of the number of update rounds. The exception is that the StructLowRank approach
performs poorly for the high subsampling parameters. This may suggest that requiring a low-rank
update structure for the convolution layers works poorly. Also, perhaps surprisingly, we see no
advantage for StructMask, which optimizes for a random sparse set of coefficients, as compared to
SketchMask, which chooses a sparse set of parameters to update after a full update is learned.

The right two plots in Figure 1 give results for SketchMask and SketchRotMask, with and without
binary quantization; we consider only the medium subsampling regime which is representative. We
observe that (as expected) introducing the random rotation without quantization has essentially no
effect (solid red and orange lines). However, binary quantization dramatically decreases the total
communication cost, and further introducing the random rotation significantly speeds convergence,
and also allows us to converge to a higher level of accuracy. We are able to learn a reasonable model
(70% accuracy) in only ∼100MB of communication, two orders of magnitude less than the baseline.

4

References
[1] Speedtest market report. http://www.speedtest.net/reports/united-states/, August 2016.

[2] Tensorflow convolutional neural networks tutorial. http://www.tensorflow.org/tutorials/deep_
cnn, 2016.

[3] Jianmin Chen, Rajat Monga, Samy Bengio, and Rafal Jozefowicz. Revisiting distributed synchronous
SGD. In ICLR Workshop Track, 2016.

[4] Trishul Chilimbi, Yutaka Suzue, Johnson Apacible, and Karthik Kalyanaraman. Project adam: Building an
efficient and scalable deep learning training system. In 11th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 14), pages 571–582, 2014.

[5] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao, Andrew Senior, Paul
Tucker, Ke Yang, Quoc V Le, et al. Large scale distributed deep networks. In NIPS, pages 1223–1231,
2012.

[6] Misha Denil, Babak Shakibi, Laurent Dinh, Nando de Freitas, et al. Predicting parameters in deep learning.
In NIPS, pages 2148–2156, 2013.

[7] Mostafa El Gamal and Lifeng Lai. On randomized distributed coordinate descent with quantized updates.
arXiv:1609.05539, 2016.

[8] Daniel Golovin, D. Sculley, H. Brendan McMahan, and Michael Young. Large-scale learning with less
ram via randomization. In ICML, 2013.

[9] Jakub Konečný, H. Brendan McMahan, and Daniel Ramage. Federated optimization: Distributed optimiza-
tion beyond the datacenter. arXiv:1511.03575, 2015.

[10] Jakub Konečný, H. Brendan McMahan, Daniel Ramage, and Peter Richtárik. Federated optimization:
Distributed machine learning for on-device intelligence. arXiv preprint arXiv:1610.02527, 2016.

[11] Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, 2009.

[12] Chenxin Ma, Jakub Konečný, Martin Jaggi, Virginia Smith, Michael I. Jordan, Peter Richtárik, and Martin
Takáč. Distributed optimization with arbitrary local solvers. arXiv:1412.6293, 2014.

[13] Chenxin Ma, Virginia Smith, Martin Jaggi, Michael Jordan, Peter Richtárik, and Martin Takáč. Adding vs.
averaging in distributed primal-dual optimization. In ICML, pages 1973–1982, 2015.

[14] H. Brendan McMahan, Eider Moore, Daniel Ramage, and Blaise Aguera y Arcas. Federated learning of
deep networks using model averaging. arXiv:1602.05629, 2016.

[15] Zheng Qu and Peter Richtárik. Coordinate descent with arbitrary sampling I: algorithms and complexity.
Optimization Methods and Software, 31(5):829–857, 2016.

[16] Zheng Qu, Peter Richtárik, and Tong Zhang. Quartz: Randomized dual coordinate ascent with arbitrary
sampling. In NIPS, volume 28, pages 865–873, 2015.

[17] M.G. Rabbat and R.D. Nowak. Quantized incremental algorithms for distributed optimization. IEEE
Journal on Selected Areas in Communications, 23(4):798–808, 2005.

[18] Sashank J Reddi, Jakub Konečný, Peter Richtárik, Barnabás Póczós, and Alex Smola. AIDE: Fast and
communication efficient distributed optimization. arXiv:1608.06879, 2016.

[19] Peter Richtárik and Martin Takáč. Stochastic reformulation of linear systems and fast stochastic iterative
methods. Technical report, 2016.

[20] Ohad Shamir, Nathan Srebro, and Tong Zhang. Communication-efficient distributed optimization using an
approximate Newton-type method. In ICML, pages 1000–1008, 2014.

[21] David P. Woodruff. Sketching as a tool for numerical linear algebra. Foundations and Trends R© in
Theoretical Computer Science, 10(1–2):1–157, 2014.

[22] Felix X Yu, Ananda Theertha Suresh, Krzysztof Choromanski, Daniel Holtmann-Rice, and Sanjiv Kumar.
Orthogonal random features. In NIPS, 2016.

[23] Yuchen Zhang and Xiao Lin. DiSCO: Distributed optimization for self-concordant empirical loss. In
ICML, pages 362–370, 2015.

5

http://www.speedtest.net/reports/united-states/
http://www.tensorflow.org/tutorials/deep_cnn
http://www.tensorflow.org/tutorials/deep_cnn

	Introduction
	Structured Update
	Sketched Update
	Experiments

