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Abstract
We consider the problem of privately learning a sparse model across multiple
sensitive datasets, and propose learning individual models locally and privately
aggregating them using secure multi-party computation. In this paper, we report
some preliminary experiments on distributed sparse linear discriminant analysis,
showing both the feasibility and effectiveness of our approach on experiments
using heart disease data collected across four hospitals.

1 Introduction
Many applications would benefit from being able to learn models across sensitive datasets owned by
different organizations. For example, multi-party data sets such as medical and financial records are
increasingly being digitized, stored, and managed by independent hospitals and companies. Previous
work in cryptography [11, 24] and privacy-preserving machine learning [28, 4, 5, 12, 13, 16] has
developed several different notions of data privacy (most notably differential privacy [7, 6]). Most
previous studies [28, 4, 5, 12, 13, 29], however, focus on privacy protection for single-party data sets,
where a single operator is entrusted with full access to all of the data and the only concern is limiting
how much information is leaked about individual records in the released model or query responses.

The goal of our work is to develop a distributed privacy-preserving machine learning method where
multiple parties holding sensitive data can collaboratively learn a model across all of their data sets
while minimizing data exposure and information leakage. We are particularly interested in sparse
learning in the high dimensional regime, because distributed sparse learning is challenging and
under-developed, and has many important potential applications where privacy is critical. The main
challenge to developing effective distributed spare learning methods is to develop debiasing methods
that allow an accurate joint model to be produced by aggregating the local models.

In our distributed private learning setting, each party produces a local model privately and the local
models are aggregated using secure multi-party computation (MPC) to produce the global model
without revealing any of the private models. MPC enables two or more parties to jointly perform a
computation on their encrypted data and obtain the result, without revealing any information about
private inputs or intermediate results.

An instantiation of our method is illustrated in Figure 1. Each individual data owner (Pi in the figure)
independently produces a model using its own data set. We assume a threat model where there are
two parties (S1 and S2) that are trusted not to collude with each other, but otherwise untrusted. The
local models are secret-shared between S1 and S2. Then, S1 and S2 will execute a secure multi-party
computation protocol that first obliviously combines the secret shares to obtain the individual models
and then aggregates them to produce the global model. This entire process is done while the data is
encrypted, so no information about the individual models is leaked to the parties executing MPC.

At the end of the process, the aggregated model could be published (assuming it is determined that
the global model does not leak sensitive information about the individual inputs). Alternately, the
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Figure 1: Secure Model Aggregation using Multi-Party Computation

model could be kept encrypted, and used as part of a MPC query engine that would provide results
using the model. A third option would be to add noise to the model (for example, to ensure a required
level of differential privacy) within the MPC before releasing it. For any of these options, there are
substantial advantages to performing the aggregation as a secure computation.
Related Work. Several prior works have proposed using MPC to enable privacy-preserving machine
learning by combining the distributed data in encrypted form and performing the full learning process
as a secure computation [19, 32, 34]. This approach provides strong privacy and can produce an
identical model to the one that would be produced by combining the data sets insecurely, but is very
expensive for large datasets and infeasible for complex learning algorithms.

Pathak et al. [23] proposed aggregating the locally-trained models using MPC and then revealing
the aggregated model after adding statistical noise. Shokri and Shmatikov [27] proposed iteratively
updating a global model by revealing differentially-private local parameter updates. These approaches
are more efficient as the local models are computed in ad-hoc and asynchronous way. However, their
learned model is less accurate due to the noise that must be added before the models are aggregated.
For classification problems, Hamm et al. [9] proposed training a global differentially private classifier
from local classifiers with the help of auxiliary unlabeled data. All the above methods are limited to
the classical regime, and it is unclear how to extend them to the high dimensional setting.

Compared to existing distributed machine learning [18, 30] and privacy-preserving machine learn-
ing [23, 27] methods, we keep both local data and models private and only reveal the global model.
In addition, our approach does not need to add noise to the local models since those models are never
revealed. In cases where the aggregate model can be released or is used as an encrypted model, this
produces a more accurate model than could be achieved if noise is added to the local models before
they are aggregated. In cases where it is still necessary to add noise to the aggregated model before it
is released, the amount of noise needed is less than what would be needed to protect each local model
independently, so the resulting model should be substantially more accurate.
Contributions. The main contribution of this paper is introducing a model for privacy-preserving
sparse distributed machine learning (Section 2) in which local models are produced using debiasing
methods to enable an accurate aggregate model, and secure multi-party computation is used to
perform the aggregation privately. Section 3 describes our implementation for privacy-preserving
distributed sparse LDA, and Section 4 reports on results from some preliminary experiments.

2 Privacy-Preserving Distributed Machine Learning
The original goal of distributed machine learning was to scale machine learning by distributing data
and computation over multiple computers (but assuming all data is owned by the same organization).
A commonly used approach in distributed machine learning is averaging: [22, 40, 39, 1]: each
“worker” machine generates a local estimator and sends it to the “master” machine, which averages
all the local estimators to form an aggregated estimator. This approach can work for low-dimensional
models, but does not produce accurate results for high-dimensional models.

In the high dimensional regime, where the number of features is larger than the number of observations,
distributed learning has been done by making structural assumptions on the model parameters, and
pursuing regularized estimation methods [31, 26, 3, 21, 8]. For example, Lee et al. [18] and Battey et
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al. [2] both proposed distributed Lasso regression [31] methods, which exploit the debiased estimators
proposed in [15, 33].

Sparse Linear Discriminant Analysis (sparse LDA) is a widely used classification technique that
extends LDA to work on high-dimensional data sets [26, 3, 21, 8], where the number of variables
used for classification is much smaller than the training sample size. In recent work [30], we proposed
a distributed classification method based on sparse LDA [3], and this paper focuses on adapting that
method to work in a setting where the individual data sets and local models must be kept private.

We consider the following high dimensional classification problem: Let X and Y be two d-
dimensional random vectors following normal distributions,N(µ1,Σ

∗) andN(µ2,Σ
∗), respectively.

For a new observation Z drawn with equal prior probability from the two normal distributions, the
Fisher’s linear discriminant rule takes the form

ψ(Z) = 1((Z − µ)>Θ∗µd > 0), (1)

where 1(·) is the indicator function, Θ∗ = Σ∗−1, also known as the precision matrix, and µ =
(µ1 + µ2)/2,µd = µ1 − µ2. From (1), note that the classification rule only depends on the product
Θ∗µd, rather than Θ∗ and µd. In the high-dimension regime, the estimator Σ̂ is often singular
and not reliable. To overcome this problem, it is natural to add some structural assumptions on the
parameters. For example, Cai and Liu [3] made the assumption that the product Θ∗µd, denoted by
β∗, is sparse, and proposed a direct way to estimate β∗ as follows

β̂ = arg min
β
‖β‖1 subject to ‖Σ̂β − µ̂d‖∞ ≤ λ, (2)

where λ is a tuning parameter. (2) can be solved by linear programming. Given β̂, we can classify a
new observation Z using the learned discriminant rule ψ̂(Z) = 1((Z − µ̂)>β̂ > 0).

When data are distributed over m owners, each owner will produce a local estimator β̂(l) using
Equation (2) based on local data, where l is the index of the owner. Due to the `1-norm penalty in
Equation (2), the resulting estimators β̂(l)’s are biased. Since averaging only reduces variances, not
the bias, if we directly average all β̂(l)’s, the performance of averaged estimator is no better than the
local estimator due to the aggregation of bias [25]. To address this problem, we proposed a debiased
estimator for LDA [30], which takes the form,

β̃(l) = β̂(l) − Θ̂(l)>(Σ̂(l)β̂(l) − µ̂(l)
d ),

where Θ̂(l), Σ̂(l) and µ̂(l)
d are estimations of Θ∗, Σ∗ and µd based on the data owned by the l-th

party. In Tian and Gu [30], we prove that, under certain conditions, if we average the debiased
estimators obtained by different parties and sparsify the averaged estimator, the final sparse estimator
will attain the same statistical rate as the centralized estimator.

Revealing the β̃(l)’s to support traditional distributed learning aggregation would leak substantial
information about the local data. Instead, we use secure multi-party computation to aggregate the
debiased local estimators while keeping them private.

3 Implementation
Our implementation is built using Obliv-C [37], which provides a high-level language for imple-
menting secure multi-party protocols. For the protocol, we use Obliv-C’s implementation of Yao’s
Garbled Circuit (GC) protocol [35, 36, 20], which incorporates recent improvements in garbled
circuit execution [10, 17, 24, 38, 11].

Our implementation is built using a generic protocol that can compute any function securely. Although
there could be more efficient custom protocols for particular computations used for these experiments
to aggregate LDA models, we prefer to use a generic protocol because it has an established security
proof and supporting tools, and because we intend to incorporate additional mechanisms (such as
adding privacy-preserving noise within the MPC to the final model) in future work.

To facilitate efficient MPC in our approach, each party Pl first scales its local model parameter
β̃(l) from Rd to Zd by multiplying with a scale factor (108) and truncating the remaining fractional
part. Pl then generates a d-dimensional random vector r(l) ∈ Zd and creates two shares of β̃(l) as
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Dataset m Misclassification Rate Number
of gates

Centralized LDA Naive Averaged Distributed LDA Our Approach for MPC
Synthetic 20 0.168± 0.002 0.240± 0.003 0.182± 0.003 0.182± 0.003 1,056,800
Synthetic 40 0.167± 0.001 0.239± 0.002 0.180± 0.002 0.180± 0.002 1,295,600
Synthetic 60 0.166± 0.001 0.240± 0.002 0.179± 0.002 0.179± 0.002 1,559,800
Synthetic 80 0.166± 0.001 0.240± 0.002 0.179± 0.001 0.179± 0.001 1,786,400
Synthetic 100 0.165± 0.001 0.240± 0.002 0.179± 0.001 0.179± 0.001 2,062,600

Real 4 0.208± 0.012 0.329± 0.035 0.220± 0.017 0.220± 0.017 94,200
Table 1: Experimental Results (20 repetitions on Synthetic data and 10 repetitions on Real data)

β̃(l) ⊕ r(l) and r(l) (refer to Figure 1). One share is sent to S1 and other share is sent to S2. In this
way, S1 and S2 obtain the shares of all m parties. Next, S1 and S2 execute the MPC protocol to
compute the aggregate model of the m parameters.

After the model aggregation, we obtain an averaged estimator β̃ = (
∑m

l=1 β̃
(l))/m, which is not

sparse. In order to get a sparse estimator, we truncate the entries of β̃ with small absolute values to
zero [30]. The resulting sparse β̃ is broadcasted to all the m parties and they can then locally rescale
β̃ from Zd back to Rd by dividing the same scale factor used before. The scaling and rescaling of
model parameters may affect the accuracy, and hence it is discussed in the next section.

4 Experiments

We conducted experiments using our method to perform privacy-preserving sparse distributed learning
on both synthetic and real data sets.
Synthetic Data Experiments. In the synthetic data experiments, we generate data setting the
covariance matrix Σ∗ as a 200 × 200 matrix where Σ∗ij = 0.8|i−j|. We set µ1 = 0 and µ2 =

(1, 1, . . . , 1, 0, 0, . . . , 0)> where the first 10 entries are ones. This means β∗ is a sparse vector with
11 nonzero entries. We set the sample size in every machine fixed as 200, where half of the data are
drawn from N(µ1,Σ

∗) and the rest are from N(µ2,Σ
∗). We vary the number of data owners from

20 to 100 and report the average misclassification rate.
Heart Disease Data. To simulate a realistic use of our approach, we performed experiments using
a dataset of 920 heart disease patients collected across four hospitals [14]. There are 13 attributes
associated with each patient, including age, gender, and laboratory test results. We extend the
categorical attributes into dummy variables in preprocessing. Every patient is labeled whether he or
she is diagnosed with heart disease. In our experiment, every hospital is treated as an independent
data owner (even though in this case the full data set was combined). We randomly choose half of
the dataset as the training set and regard the remaining half as the test set. Then an LDA model is
trained based on the training set to predict the label of each patient in the test set. We evaluate the
misclassification rate of the learned model on the test dataset.
Observations. Table 1 summarizes the results. We observed no loss in accuracy due to scaling and
rescaling process. The debiasing step greatly decreases the misclassification rate compared with the
naïvely averaged estimator. Also the proposed approach achieves comparable misclassification rate
with the centralized LDA estimator. The time to perform the MPC aggregation is under two seconds
(our framework executes well over 4M gates/second), and scales linearly with the number of local
models to aggregate, so these results would hold for larger datasets.

5 Conclusions

Our proposed framework employs debiased estimators to enable private sparse distributed learning,
and uses secure multi-party computation to aggregate the models to provide privacy. We empirically
verified that the approach is promising for sparse LDA; our approach can also be applied to high
dimensional regression [31, 18, 2]. Several steps remain before these methods can be widely adopted
including rigorously analyzing the accuracy loss for different scenarios, and understanding how much
information is leaked by the aggregated model and how to incorporate noise to eliminate this leakage.
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