
Privacy Preserving Multi-party Machine Learning
with Homomorphic Encryption

Hassan Takabi
University of North Texas

Denton, TX, USA
takabi@unt.edu

Ehsan Hesamifard
University of North Texas

Denton, TX, USA
ehsanhesamifard@my.unt.edu

Mehdi Ghasemi
University of Saskatchewan

Saskatoon, Canada
mehdi.ghasemi@usask.ca

Abstract

Privacy preserving multi-party machine learning approaches enable multiple parties
to train a machine learning model from aggregate data while ensuring the privacy of
their individual datasets is preserved. In this paper, we propose a privacy preserving
multi-party machine learning approach based on homomorphic encryption where
the machine learning algorithm of choice is deep neural networks. We develop
theoretical foundation for implementing deep neural networks over encrypted data
and utilize it in developing efficient and practical algorithms in encrypted domain.

1 Introduction

In many settings, multiple parties would benefit from training precise machine learning models on
the data aggregated from datasets collected by different parties. For example, multiple medical
institutions might share patient data to collaboratively train a machine learning model that helps
in diagnosing a disease. The aggregate data would allow machine learning algorithms to produce
better models as more data is available to the algorithms and it provides a set of features that would
not otherwise be available to any of the parties. However, the parties may be hesitant to share their
potentially sensitive data due to privacy concerns. On the other hand, machine learning algorithms
based on deep neural networks are achieving remarkable results and are extensively used for data
analytics in a variety of domains such as spam detection, traffic analysis, intrusion detection, medical
or genomics predictions, face recognition, and financial predictions. However, training the models
require access to the raw data which is often privacy sensitive.

Motivated by these two issues, in this paper, we focus on the problem of privacy preserving multi-
party machine learning where the machine learning algorithm of choice is neural networks. We aim
to provide solutions to run deep learning algorithms based on neural networks on encrypted data and
allow the parties to jointly train a model without having to reveal their sensitive data to the other
parties. Recent advances in fully homomorphic encryption (FHE) enable a limited set of operations
to be performed on encrypted data. This will allow us to apply machine learning models directly to
encrypted data and return encrypted results without compromising security and privacy concerns.
However, due to a number of constraints associated with these cryptographic schemes, designing
practical efficient solutions to run deep learning models on encrypted data is a challenging task.

Although implementing machine learning algorithms in encrypted domain has been studied in recent
years (1; 2; 3; 5; 6; 11), there is not much work on multi-party machine learning in encrypted domain.
In order to have efficient and practical solutions for computations in encrypted domain, we typically
need to use somewhat homomorphic schemes or leveled homomorphic schemes instead of fully
homomorphic encryption. However, a solution that builds upon these encryption schemes has to
be restricted to computing low degree polynomials in order to be practical. Having a real valued
elementary function f , we are interested in finding polynomials with the lowest possible degree that
estimate f within a certain error range.

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.

We first provide theoretical foundation to show that it is possible to find lowest degree polynomial
approximation of a function within a certain error range and provide an approach to generate those
approximations. We use Chebyshev polynomials for approximating the functions and make some
changes in Chebyshev basis to achieve a better performance in neural networks. Next, we propose
two methods for approximating a continuous function such as sigmoid with low degree polynomials
and utilize these polynomials in neural network and analyze the performance of the new algorithms.
Finally, we implement the neural networks with polynomial approximation as activation function
over encrypted data. Our preliminary results are promising and show that neural networks could be
trained over encrypted data where the datasets are distributed across multiple data owners.

2 Theoretical Foundation: Polynomial Approximation

Let us denote the family of all continuous real valued functions on a non-empty compact space
X by C(X). Suppose that among elements of C(X), a subfamily A of functions are of particular
interest. For simplicity, one can think of X as a closed, bounded interval [a, b] in R and A as the set
of polynomials in a single variable with real coefficients. Since linear combination and product of
polynomials are also polynomials, we assume that A is closed under addition, scalar multiplication
and product and also a non-zero constant function belongs to A (This actually implies that A contains
all constant functions).

We say an element f ∈ C(X) can be approximated by elements of A, if for every ε > 0, there exists
p ∈ A such that |f(x)− p(x)| < ε for every x ∈ X . The following classical results guarantee when
every f ∈ C(X) can be approximated by elements of A.

Theorem 1 (Stone–Weierstrass) Every element of C(X) can be approximated by elements of A if
and only if for every x 6= y ∈ X , there exists p ∈ A such that p(x) 6= p(y).

Despite the strong and important implications of the Stone-Weierstrass theorem, it leaves computa-
tional details out and does not give a specific algorithm to generate an estimator for f with elements
of A, given an error tolerance ε. To address this issue, and the search for an object begins.

Define ‖f‖ (the sup norm of f) of a given function f ∈ C(X) by ‖f‖∞ = supx∈X |f(x)|,
Then, the above argument can be read as: For every f ∈ C(X) and every ε > 0, there exists
p ∈ A such that ‖f − p‖∞ < ε. It is easy to see that ‖0‖∞ = 0, ‖λf + g‖∞ ≤ |λ|‖f‖∞ + ‖g‖∞
(subadditivity) and ‖f × g‖∞ ≤ ‖f‖∞ × ‖g‖∞. The function ‖ · ‖∞ on C(X) is an instance of
norm on the function space C(X), which also resembles the structure of inner product spaces which
have nice geometry and one can define and develop intuitive concepts over them easily. Let V be
an R-vector space, an inner product on V is a function 〈·, ·〉 : V × V → R satisfying the following
requirements:

1. 〈f, f〉 ≥ 0;
2. 〈f, f〉 = 0 if and only if f = 0;
3. 〈αf + βg, h〉 = α〈f, h〉+ β〈g, h〉 ≥ 0 for every α, β ∈ R;
4. 〈f, g〉 = 〈g, f〉.

The pair (V, 〈·, ·〉) is called inner product space and the function ‖v‖ = 〈v, v〉 12 induces a norm on
V . A basis {vα}α∈I is called an orthonormal basis for V if 〈vα, vβ〉 = δαβ , where δαβ = 1 if and
only if α = β and is equal to 0 otherwise. Every given set of linearly independent vectors can be
turned into a set of orthonormal vectors that spans the same sub vector space as the original. The
following well-known result gives us an algorithm for producing such orthonormal vectors from a set
of linearly independent vectors:

Theorem 2 (Gram–Schmidt) Let (V, 〈·, ·〉) be an inner product space. Suppose {vi}ni=1 is a
set of linearly independent vectors in V . Let u1 := v1

‖v1‖ and (inductively) let wk := vk −∑k−1
i=1 〈vk, ui〉ui and uk := wk

‖wk‖ , then {ui}ni=1 is an orthonormal collection, and for each k,
span{u1, u2, · · · , uk} = span{v1, v2, · · · , vk}.

Note that in the above theorem, we can even assume that n =∞.

2

Let B = {v1, v2, . . . } be an ordered basis for (V, 〈·, ·〉). For any given vector w ∈ V and any initial
segment of B, say Bn = {v1, . . . , vn}, there exists a unique v ∈ span(Bn) such that ‖w − v‖ is the
minimum:

Theorem 3 Let w ∈ V and B a finite orthonormal set of vectors (not necessarily a basis). Then, for
v =

∑
u∈B〈u,w〉u, we have ‖w − v‖ = minz∈span(B) ‖w − z‖.

Now, let µ be a finite measure on X and for f, g ∈ C(X) define 〈f, g〉 =
∫
X
fgdµ. This defines an

inner product on the space of functions. The norm induced by the inner product is denoted by ‖ · ‖2,µ.
It is evident that ‖f‖2,µ≤‖f‖∞µ(X), ∀f ∈ C(X) which implies that any good approximation in
‖ · ‖∞ gives a good ‖ · ‖2,µ-approximation. But generally, our interest is the other way around.
Employing Gram–Schmidt procedure, we can find ‖ · ‖2,µ within any desired accuracy, but this
does not guarantee a good ‖ · ‖∞-approximation. The situation is favorable in finite dimensional
case. Take B = {p1, . . . , pn} ⊂ C(X) and f ∈ C(X), then there exists Kf > 0 such that for every
g ∈ span(B ∪ {f}),

Kf‖g‖∞ ≤ ‖g‖2,µ≤‖g‖∞µ(X). (1)

Since X is assumed to be compact, C(X) is separable, i.e., C(X) admits a countable dimensional
dense subvector space (e.g. polynomials for when X is a closed, bounded interval). Thus for every
f ∈ C(X) and every ε > 0, one can find a big enough finite B, such that (1) holds. In other words,

“good enough ‖ · ‖2,µ-approximations of f give good ‖ · ‖∞-approximations”, as desired.

In practice, X = [a, b] and the countable dimensional subspace is the algebra of polynomials which
satisfies the assumption of the Stone–Weierstrass theorem and the set of monomials is admissible in
Gram–Schmidt process. Different choices of µ, gives different systems of orthogonal polynomials.
For example, if we choose dµ = dx on [−1, 1], then we get Legendre polynomials and if we choose
dµ = dx√

1−x2
on [−1, 1], then we get Chebyshev polynomials.

In this work, we experiment with polynomial approximations of the sigmoid function 1
1+e−x over a

symmetric interval [−l, l] using two different orthogonal system of polynomials. As the first choice,
we consider Chebyshev polynomials on the stretched interval which come from the measure

dµ =
dx

l
√

1− (x/l)2
. (2)

Our second choice comes from the measure.

dµ = e−(l/x)
2

dx. (3)

We note that the measure for Chebyshev polynomials mainly concentrates at the end points of the
interval which causes interpolation at mostly initial and end points with two singularities at both ends.
While the second measure evens out through the whole real line and puts zero weight at the center.
This behavior causes less oscillation in the resulting approximation and hence more similarities of
derivatives with sigmoid function. We use SageMath (4) to find coefficients of Chebyshev polynomial
for the sigmoid function f(x) = 1

1+e−x .

The results show that the higher degrees give a better approximation and we expect that a better
approximation will be a better replacement for the sigmoid function in the neural network.

3 Experimental Results

3.1 Polynomial Approximation in Neural Networks

Once the polynomial approximations are calculated, we replace the activation function in neural
network with approximation polynomials and analyze the performance of neural network. We utilize
Neural Network Toolbox (10) to implement the neural network and use 15 datasets from UC Irvine
Machine Learning Repository (8).

3

We compute polynomial approximations for sigmoid function based on four different parameters:
degree, error, intervals and precision of coefficients. To compare the performance of our polynomial
approximations with other studies, we use several activation functions for training: sigmoid function
f1(x) =

1
1+e−x , another variation of sigmoid function f2(x) = 2

1+e−4x − 1, and square function
f3 = x2 which was proposed in (9) and (5).

The results show that our polynomial approximation is able to achieve the best accuracy if we choose
the interval properly based on the dataset.

3.2 Polynomial Computation over Encrypted Values

We run the polynomials over encrypted data and measure the computation cost of this step. We
used HELib for implementation. For generating schemes in HELib, we set some values for input
parameters, k = 80, s = 1, w = 64 (for details about these parameters see (7)). The other important
value is L. Small values for L decrease the computation time, however the degree of polynomial also
decreases. Large values of L lead to slower computations and larger degrees for polynomials. Size of
ciphertext and the time for generating encryption scheme increased by increasing the value for L.

We used polynomials from degrees 2 to 9 and increased the value of L from 5 to 25 as the degree of
the polynomials increased. All the computations are in mod 1018 + 37, which is a prime number. For
example, for degree 2 running time is 0.1 seconds with L = 9 and for degree 3 running time is 0.3
seconds with L = 15.

3.3 Neural Network over Encrypted Data

For implementing neural networks over encrypted data, we need to revise the structure of neural
network to have an efficient and compatible structure with HE schemes. In this work, we focus on
fully connected feed-forward neural networks. We performed experiments for learning from datasets
with different numbers of features and different numbers of classes.

To address the noise problem, instead of bootstrapping, we use an alternative approach where the
server checks the level of noise in the ciphertext after each operation and if the noise level is lower than
the threshhold (i.e. 2), the server sends the ciphertext to the client and the client decrypts and encrypts
it again and sends the fresh ciphertext back to the server. Our results show that communication
between the client and the server is the most time consuming part of the process. Therefore, we
should choose our parameters in the encryption schemes in a way to have fewer communications.
Two values that have impact on the number of interaction between the client and the server are L
and p. If we choose a proper prime number p, we could use smaller values for L which consequently
decrease the size of ciphertext and time of computations.

Although our approach requires some communications between the client and the server, it has
several advantages over multi-party computation (MPC). The main advantage is the number of
communications. In MPC protocols, we need a number of interactions between client and server for
each operation whereas in our approach, the server does not need to interact with the client unless
the amount of noise reaches a threshold. If the same neural network is implemented using MPC
protocols, number of communications grows enormously. Another advantage is that unlike MPC
approaches, the structure of the client does not need to be changed when the learning algorithm is
changed. The only operations in client side are encryption and decryption and server can perform
different learning algorithms with the same client.

4 Conclusion

In order to provide privacy preserving multi-party machine using homomorphic encryption, we devel-
oped a theoretical foundation for approximating activation functions with low degree polynomials
and provided an approach to generate those approximations based on Chebyshev polynomials. We
then used these approximation to train neural networks with polynomial approximation as activation
function over encrypted data. We are working on extending our approach to scenarios where the
datasets are distributed across multiple parties and computations are decentralized. We also plan to
study approximation of non-continuous functions used in deep learning algorithms.

4

References
[1] L. J. M. Aslett, P. M. Esperança, and C. C. Holmes, “A review of homomorphic encryption and

software tools for encrypted statistical machine learning,” University of Oxford, Tech. Rep.,
2015.

[2] L. J. M. Aslett, P. M. Esperança, and C. C. Holmes, “Encrypted statistical machine learning:
new privacy preserving methods,” CoRR, vol. abs/1508.06845, 2015.

[3] R. Bost, R. A. Popa, S. Tu, and S. Goldwasser, “Machine learning classification over encrypted
data,” in 22nd Annual Network and Distributed System Security Symposium, NDSS 2015, San
Diego, California, USA, February 8-11, 2014, 2015.

[4] T. S. Developers, SageMath, the Sage Mathematics Software System (Version 7.1), 2016,
http://www.sagemath.org.

[5] N. Dowlin, R. Gilad-Bachrach, K. Laine, K. L. M. Naehrig, and J. Wernsing, “Cryptonets:
Applying neural networks to encrypted data with high throughput and accuracy,” Tech. Rep.
MSR-TR-2016-3, 2016. [Online]. Available: http://research.microsoft.com/apps/pubs/default.
aspx?id=260989

[6] T. Graepel, K. Lauter, and M. Naehrig, “ML confidential: Machine learning on encrypted data,”
in Information Security and Cryptology–ICISC 2012. Springer, 2013, pp. 1–21.

[7] S. Halevi and V. Shoup, “Algorithms in helib,” in Advances in Cryptology - CRYPTO 2014 - 34th
Annual Cryptology Conference, Santa Barbara, CA, USA, August 17-21, 2014, Proceedings,
Part I, 2014, pp. 554–571.

[8] M. Lichman, “UCI machine learning repository,” 2013. [Online]. Available: http:
//archive.ics.uci.edu/ml

[9] R. Livni, S. Shalev-Shwartz, and O. Shamir, “On the computational efficiency of training neural
networks,” CoRR, vol. abs/1410.1141, 2014.

[10] P. Pilotte, “Neural Network Toolbox,” 2016. [Online]. Available: http://www.mathworks.com/
products/neural-network/

[11] P. Xie, M. Bilenko, T. Finley, R. Gilad-Bachrach, K. Lauter, and M. Naehrig, “Cryptonets:
Neural networks over encrypted data,” Tech. Rep., 2014.

5

http://research.microsoft.com/apps/pubs/default.aspx?id=260989
http://research.microsoft.com/apps/pubs/default.aspx?id=260989
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://www.mathworks.com/products/neural-network/
http://www.mathworks.com/products/neural-network/

	Introduction
	Theoretical Foundation: Polynomial Approximation
	Experimental Results
	Polynomial Approximation in Neural Networks
	Polynomial Computation over Encrypted Values
	Neural Network over Encrypted Data

	Conclusion

