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Abstract

Machine learning relies on the availability of high-quality training data and—
whether by its inherent nature, or by accident—this data will sometimes contain
private information. When the model is to be published or made publicly accessible
and the training data is not, it is important that the details of the sensitive training
data cannot be inadvertently revealed by the model.
This abstract presents a generally applicable approach to providing strong privacy
guarantees for machine learning training data. The approach is based on combining,
in a black-box fashion, multiple machine learning models trained with disjoint
sensitive datasets, such as data for different users. Because they rely directly on
sensitive data, these models are used only as “teachers” for a “student” machine
learning model. However, when training the student, the teachers transfer only the
labels upon which they all generally agree, via a noisy aggregation mechanism.
The student has privacy properties that can be understood both intuitively (since no
single teacher dictates the student’s training) and formally, in terms of differential
privacy. These properties address “glass-box” attacks of the kind that arise if an
adversary not only queries the student but also inspects its internal workings.
The approach imposes only weak assumptions on how the teachers are trained. It
applies to powerful, deep models, possibly with many layers and parameters. Our
experiments demonstrate that the approach applies to real-world machine learning
tasks, at a reasonable cost in accuracy, privacy, and software complexity.

1 Introduction

In certain applications, the data used by learning algorithms is sensitive: e.g., medical data [2].
Users need to trust institutions and companies collecting and handling their personal data with the
enforcement of their privacy. Machine learning is known to be vulnerable to attacks forcing trained
models to reveal private data processed during their training phase [8]. This can be explained by the
fact that models with sufficient capacity can “overfit” and encode training data in their parameters.

Ideally, the privacy of training data could be guaranteed, in a manner that prevented overfitting and
protected data confidentiality. Several formalizations of privacy have been proposed [5], among
which differential privacy [6, 7] is established as a rigorous standard. Informally, a differentially
private algorithm guarantees that the inclusion or exclusion of any single training example has a
bounded effect on the probability of any outcome of the learning process. Such guarantees can be
provided by designing a variant of the algorithm involving carefully selected random noise [6, 11].
This introduces ambiguity, a requirement for non-trivial privacy guarantees [7].
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Figure 1: Overview of the approach: (1) an ensemble of teachers is trained on disjoint subsets of the
sensitive data, (2) a student model is trained on public data labeled using the ensemble.

In our work, the training data contains the sensitive information that must be protected with differential
privacy. Machine learning, as any statistical analysis tool, raises privacy concerns because predictions
made could be harmful to the privacy of individual users—the presence or absence of an individual in
a training corpus can change the output of a machine learning model despite the model being trained
on a large corpus [3]. To understand why, consider a nearest neighbor classifier and how removing a
single point from its training set is sufficient to change its predictions on certain inputs.

We present a generic strategy to learn privacy-preserving models, unlike some previous efforts [13, 1].
The strategy consists of an ensemble [4] of teacher models, trained on disjoint data, and a student
model that learns to mimic the ensemble. When a quorum of teachers is reached, the corresponding
prediction intuitively stems from generalization and not from overfitting to a specific training point—
as all teachers were trained on disjoint subsets of the dataset. The student is allowed to see only the
unified output of the ensemble, which doesn’t convey the details of any single sensitive training point.
The teacher ensemble returns noisy aggregated predictions to provide differential privacy.

Privacy is preserved better when the student requires few labeled examples and thus fewer queries to
the teachers. The cost of deploying the student is independent from the number of predictions made
because private information is only leaked during its training. We demonstrate that semi-supervised
learning with generative adversarial networks [12] is an effective choice of student model.

An appealing aspect of our approach is that we can simultaneously provide intuitive and rigorous
guarantees expressed in terms of differential privacy, making the solution compelling to both an
expert and a non-expert audience. Our contributions are the following:

• We use semi-supervised learning together with the moments accountant technique [1] in our
privacy analysis, allowing us to overcome limitations of previous teacher-student strategies.
This allows us to improve the student’s accuracy at no expense to the privacy cost.

• We evaluate our framework on MNIST and SVHN, allowing for a comparison of our results
with previous differentially private learning efforts [13, 1]. Our classifiers are respectively
(2.04, 10−5) and (8.19, 10−6) differentially private, with accuracies of 98.00% and 90.66%.
In comparison, Abadi et al. obtained 97% accuracy with a (8, 10−5) bound on MNIST [1].
In [13], Shokri et al. report about 92% accuracy on SVHN with ε > 2 per model parameter
and a model with over 300, 000 parameters. Naively, this corresponds to a total ε > 600, 000.

Our work improves upon [10] by (1) removing all assumptions made regarding the loss, and (2)
providing a stricter privacy analysis to greatly reduce the numbers of teachers while achieving similar
privacy/utility trade-offs. Hence, our approach is applicable to more classifiers and smaller datasets.

2 Private Learning with Ensembles of Teachers

Our approach, illustrated in Figure 1, consists of two stages: first an ensemble of teacher models is
trained on disjoint subsets of the private data, and second a student model is trained to mimic this
ensemble, using new unlabeled non-sensitive inputs that are labeled by querying the ensemble.
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2.1 Training the Ensemble of Teachers

Instead of training a single model to solve the supervised task associated with a dataset (X,Y ), we
partition this dataset in n disjoint sets (Xn, Yn) and train a model separately on each of these sets.
Assuming that n is not too large with respect to the dataset size, we obtain n classifiers fi called
teachers. We then deploy them as an ensemble making predictions on unseen inputs x by querying
each teacher for a prediction fi(x) and aggregating these into a single prediction.

The privacy guarantees of this ensemble stem from its aggregation. Let m be the number of classes
in our task. The label count for a given class j ∈ 1..m and an input ~x is the number of teachers that
assigned class j to input ~x: nj(~x) = |{i : i ∈ 1..n, fi(~x) = j}|. If we simply apply plurality—use
the label with the largest count—the ensemble’s decision may depend on a single teacher’s vote.
Indeed, when two labels have a vote count differing by at most one, there is a tie: the aggregated
output changes if one teacher makes a different prediction. Therefore, we add random noise to the
vote counts nj to introduce ambiguity: f(x) = argmaxj

{
nj(~x) + Lap

(
1
ε

)}
. In this equation, the

ε is a privacy parameter and Lap(b) the Laplacian distribution with location 0 and scale b. Smaller
values of ε provide stronger privacy guarantees but degrade the accuracy of the aggregation: the noise
added can potentially change the respective order of label counts.

However, these guarantees do not necessarily hold if an adversary has access to the model itself.
Indeed, as each teacher fi was trained without taking into account privacy, it is conceivable that
the teachers have sufficient capacity to retain details of the training data [8]. Furthermore, as more
queries are made to the ensemble, the noise added must increase to continue providing strong privacy
guarantees. The utility of the model is thus subject to strong degradation. To address these limitations,
we then train a student model based on a fixed number of labels predicted by the teacher ensemble.

2.2 Semi-Supervised Transfer of the Knowledge from an Ensemble to a Student

We train a student on nonsensitive and unlabeled data that we label using the output of the aggregation
mechanism. This student model is the one deployed to answer user queries. This fixes the privacy
loss to a a value that is constant with respect to the number of user queries made to the student model.
The privacy loss is a function of the number of queries made to the teacher ensemble during student
training and does not increase as end-users query the deployed student model. Thus, the privacy of
users who contributed to the original dataset used to train the ensemble of teachers is preserved even
if the student’s architecture and parameters are public or reverse-engineered by an adversary.

Learning the student in a semi-supervised fashion using generative adversarial networks [9] allows us
to leverage the entire student training set while only labeling a subset of it. The generative adversarial
network framework involves two machine learning models, a generator and a discriminator. They
are trained in a competing fashion. The generator produces samples from the data distribution by
transforming vectors sampled from a Gaussian distribution. The discriminator is trained to distinguish
samples artificially produced by the generator from samples part of the real data distribution. The
two models are trained via simultaneous gradient descent steps on both player’s costs with the goal
of converging to the Nash equilibrium. In our experiments, we follow the adaptation of generative
adversarial networks to semi-supervised learning presented in [12]. The discriminator is extended
from a binary classifier (data sample vs. generator sample) to a multi-class classifier (one of k classes
of data samples, plus an additional class for generated samples). This classifier—discriminator—is
then trained to classify real samples in one of the real classes, and the generated samples in the
corresponding additional class. Although no formal results currently explain why yet, the technique
was empirically demonstrated to greatly improve semi-supervised learning of classifiers on several
datasets, especially when the classifier is trained with an additional feature matching loss [12].

2.3 Privacy Analysis of the Approach

We observe that the actual privacy cost of the noisy aggregation mechanism is very small when
the margin between the best and the second-best label is large. So our analysis is data dependent,
and to keep track of the privacy cost, we use the moments account introduced in [1]. Due to space
constraints, we do not include our full privacy analysis, but we will do so in the poster and full paper.
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Dataset ε δ Queries Baseline Accuracy
MNIST 2.04 10−5 100 99.18% 98.00%
MNIST 8.03 10−5 1000 99.18% 98.10%
SVHN 5.04 10−6 500 92.80% 82.72%
SVHN 8.19 10−6 1000 92.80% 90.66%

Figure 2: Student test accuracy and (ε, δ) differential privacy bounds for varying number of queries.

3 Experimental Validation

Our evaluation is two-fold. We (1) train an ensemble of teachers that produces accurate and private
aggregated labels, and (2) learn a student using as few queries to the teacher ensemble as possible to
minimize the privacy budget. In our experiments, we use MNIST and the extended SVHN.

Our non-private MNIST model stacks two convolutional layers with max-pooling and one ReLU
layer. It has a 99.18% test accuracy. For SVHN, we add two hidden layers 2 to achieve a 92.8% test
accuracy, which is shy of the state-of-the-art. However, we are primarily interested in comparing the
private student’s accuracy with the one of a non-private model trained on the entire training dataset.

3.1 Training of the Ensemble of Teachers

For the MNIST and SVHN datasets we are able to train ensembles of n = 250 teachers making
sound predictions despite the injection of large amounts of random noise to ensure privacy. This
is due to the large gap between the number of votes received by the first and second most frequent
labels. The gap increases with n. It must be sufficiently large to ensure the aggregation mechanism is
robust to the Laplacian noise added to perturb the label vote counts. For instance, if the Laplacian
noise introduced has scale 20, the aggregation mechanism has an accuracy of 93.18% for MNIST
and 87.79% for SVHN, while each query has a low privacy budget of ε = 0.05.

The large Laplacian scale is explained by the sensitivity of each machine learning model, which is
considered to be 1 in the privacy analysis: in other words it is assumed that changing one point in the
training set of a single teacher can suffice to change the predictions made by the teacher, and thus
two of the vote counts by 1. As a consequence, a large amount of data is potentially required to be
able to train large number of teachers, depending on the classification task complexity.

3.2 Semi-Supervised Student Training

We apply semi-supervised learning with generative adversarial networks as follows. For MNIST, we
use 9, 000 samples from the traditional test set as our source of public training data for the student
network. We use the remaining 1, 000 samples to evaluate the student’s generalization error. Of the
9, 000 training samples, most are used as unlabeled examples for semi-supervised learning, and a
class-balanced random subset of either 100 or 1, 000 are labeled using the aggregation mechanism.
For SVHN, the student has access to 10, 000 training inputs, among which it labels 500 or 1, 000
samples using the teacher ensemble. Its performance is evaluated on the remaining 16, 032 samples.

For both datasets, we use 250 teachers and a Laplacian scale of 20. This parameter choice is motivated
by results from Section 3.1 and corresponds to a privacy bound of ε = 0.05 per query. In Figure 2,
we report values of the (ε, δ) differential privacy guarantees and student accuracy for varying number
of queries made to the aggregation mechanism. The MNIST student is able to learn a 98% accurate
model, which is shy of 1% when compared to the accuracy of a model learned with the entire training
set, with only 100 label queries. This results in a strict differentially private bound of ε = 2.04 with a
failure probability of 10−5. The SVHN student has an accuracy of 90.66%, compared to 92.80% for
a model learned with the entire dataset. The privacy bound ε = 8.19 with δ = 10−6 is looser. These
bounds are themselves sensitive and should not be released publicly. When working with real private
data, one should publish values of ε perturbed with noise proportional to its smooth sensitivity.

2The model is adapted from: https://www.tensorflow.org/tutorials/deep_cnn
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4 Conclusions

This abstract demonstrated how semi-supervised learning, together with a strict privacy analysis
based on the moments accountant technique, can increase the accuracy of private models while
lowering the differentially private bounds that are guaranteed. Namely, we showed in our experiments
on the MNIST and SVHN datasets that the utility lost to provide privacy guarantees is limited: our
(2.04, 10−5) and (8.19, 10−6) differentially private MNIST and SVHN students are only respectively
1% and 3% less accurate than our model trained on the entire corresponding dataset.
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